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Computational capabilities of physical systems
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In this paper strong limits on the accuracy of real-world physical computation are established. To derive
these results a non-Turing machine formulation of physical computation is used. First it is proven that there
cannot be a physical computerC to which one can pose any and all computational tasks concerning the
physical universe. Next it is proven that no physical computerC can correctly carry out every computational
task in the subset of such tasks that could potentially be posed toC. This means in particular that there cannot
be a physical computer that can be assured of correctly ‘‘processing information faster than the universe does.’’
Because this result holds independent of how or if the computer is physically coupled to the rest of the
universe, it also means that there cannot exist an infallible, general-purpose observation apparatus, nor an
infallible, general-purpose control apparatus. These results do not rely on systems that are infinite, and/or
nonclassical, and/or obey chaotic dynamics. They also hold even if one could use an infinitely fast, infinitely
dense computer, with computational powers greater than that of a Turing machine~TM!. After deriving these
results analogs of the TM Halting theorem are derived for the novel kind of computer considered in this paper,
as are results concerning the~im!possibility of certain kinds of error-correcting codes. In addition, an analog of
algorithmic information complexity, ‘‘prediction complexity,’’ is elaborated. A task-independent bound is de-
rived on how much the prediction complexity of a computational task can differ for two different reference
universal physical computers used to solve that task. This is analogous to the ‘‘encoding’’ bound governing
how much the algorithm information complexity of a TM calculation can differ for two reference universal
TMs. It is proven that either the Hamiltonian of our universe proscribes a certain type of computation, or
prediction complexity is unique~unlike algorithmic information complexity!. Finally, the implications of this
analysis for the issue of whether the universe ‘‘is’’ a computer are briefly discussed.
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INTRODUCTION

Recently there has been heightened interest in the r
tionship between physics and computation@1–37#. This in-
terest extends far beyond the topic of quantum computat
On the one hand, physics has been used to investigate
limits on computation imposed by operating computers
the real physical universe. Conversely, there has been sp
lation concerning the limits imposed on the physical unive
~or at least imposed on our models of the physical unive!
by the need for the universe to process information, as c
puters do.

To investigate this second issue one would like to kn
what fundamental distinctions, if any, there are between
physical universe and a physical computer. To address
issue this paper begins by establishing that the universe
not contain a computer to which one can pose any arbit
computational task. Accordingly, this paper goes on to c
sider computer-indexed subsets of computational ta
where all the members of any such subsetcan be posed to
the associated computer. Restricting attention to such
sets, it then proves that one cannot build a computer that
‘‘process information faster than the universe.’’ More pr
cisely, it is shown that one cannot build a computer that c
for any physical system, correctly predict any aspect of t
system’s future state before that future state actually occ

This asymmetry in computational speeds constitute
fundamental distinction between the universe and the se
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all physical computers. Its existence casts an interesting l
on the ideas of Fredkin, Landauer, and others concern
whether the universe ‘‘is’’ a computer, whether there a
‘‘information-processing restrictions’’ on the laws of physic
etc.@11,20#. In a certain sense, the universe is more powe
than any information-processing system constructed withi
could be. This result can alternatively be viewed as a rest
tion on the computational power of the universe—the u
verse cannot support the existence within it of a compu
that can process information as fast as it can.

To establish this unpredictability result this paper cons
ers a model of physical computation that is actually gene
enough to address the performance of other computati
tasks as well as the prediction of the future. In particular, t
model does not rely on temporal orderings of events, a
therefore the unpredictability results also establish that
computer can infallibly predict thepast~i.e., perform retrod-
iction!. So any memory system must be fallible, i.e., t
second law of thermodynamics cannot be used to ensu

1To ‘‘remember,’’ in the present, an event from the past, forma
means ‘‘predicting’’ that event accurately~i.e., retrodicting the
event!, using only information from the present. Such retrodicti
relies crucially on the second law. Hence, the temporal asymm
of the second law causes the temporal asymmetry of memory~we
remember the past, not the future!. That asymmetry of memory in
turn causes the temporal asymmetry of the psychological arrow
time. ‘‘Memory systems theory’’ refers to the associated physics
retrodiction; it is the thermodynamic analysis of systems for tra
ferring information from the past to the present. See@31#.
28-1
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DAVID H. WOLPERT PHYSICAL REVIEW E 65 016128
perfectly faultless memory of the past.~Accordingly, the psy-
chological arrow of time is not inviolate@31#.1! The unpre-
dictability results are also general enough to allow arbitr
coupling of the computer and the external universe. So,
example, they also establish that there cannot be eithe
infallible general purpose observation device nor an in
lible general purpose control device.~The result concerning
observation can be viewed as an uncertainty principle,
that does not involve quantum mechanics.!

No physically unrealizable systems, chaotic dynamics
nonclassical dynamics are exploited in this paper, and
results hold even if one restricts attention to predicting s
tems that contain a finite number of degrees of freedom.
results also hold even if the computer is infinitely den
and/or infinitely fast, even if the computer has an infin
amount of time to do the calculation~either before or after
the event being predicted occurs!. The results also hold eve
if the computer’s initial input explicitly contains the corre
value of the variable it is trying to predict and/or observ
More generally, they hold regardless of the program runn
on the computer. They also hold for both analog and dig
computation, and whether or not the computer’s program
be loaded into its own input~i.e., regardless of the computa
tional universality of the computer!. In fact they hold regard-
less of the~Chomsky hierarchy! power of one’s computer, so
long as it is physically realizable. If it turns out to be phys
cally possible to have computers with computational pow
greater than that of a Turing machine, then the result of
paper holds for such a computer. As a particular example,
results also hold even if the ‘‘computer’’ includes one
more human beings. So even if Penrose’s musing on qu
tum gravity and intelligence turns out to be valid—even
human computational powers are not subject to the res
tions that apply to any of the members of the Choms
hierarchy—it is still true that human intelligence isguaran-
teedto be wrong sometimes.

Results of such generality are derived by examining
underlying issues from the perspective of the computatio
character of real-world physical systems in general, rat
than that of some single precisely specified~and often non-
physically realizable! computer system. The associat
mathematics does not directly involve dynamical syste
like Turing machines. Rather it casts computation in terms
partitions of the space of possible worldlines of the univer
For example, to specify what input a particular physic
computer has at a particular time is to specify a particu
subset of all possible world lines of the universe; differe
inputs to the computation correspond to different~nonover-
lapping! such subsets. Similar partitions specify outputs o
physical computer. Results concerning the~im!possibility of
certain kinds of physical computation are derived by cons
ering the relationship between these kinds of partitions. In
being defined in terms of such partitions, ‘‘physical comp
tation’’ involves a structure that need not even be instantia
in some particular physically localized apparatus; the form
definition of a physical computer is general enough to a
include more subtle nonlocalized dynamical processes
folding across the entire universe. Computers in the conv
tional, space-time localized sense~e.g., the box on your
01612
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desk! are simply special examples, with lots of extra restr
tions that turn out to be unnecessary in the underlying ma
ematics.

Section I of this paper generalizes from particular
stances of real-world physical computers that ‘‘try to reliab
and ahead of time predict the future state of any system
motivate a broad formal definition of physical computati
in terms of partitions. To maintain maximum breadth of t
analysis, we do not want to restrict attention to physical co
puters that are~or are not! capable of self-reference. As a
alternative, we start by restricting attention to universes c
taining at least two physical computers.~Put another way,
our initial results hold for any single computer not so po
erful as to preclude the possible existence anywhere els
the universe of another computer as powerful as it is—wh
certainly describes any computer that human beings can
create.! Section I also establishes that there exist predict
problems that cannot even be posed to one of those
physical computers. Restrictions on the set of predict
problems are introduced accordingly.

Section II proves that, even within such a restricted se
prediction problems, one cannot have a pair of compu
each of which can, reliably and ahead of time, predict
future state of any system. It is also in Sec. II that the i
possibility of an infallible general-purpose retrodiction app
ratus, observation apparatus, or control apparatus is es
lished. These results are all derived through what
essentially a physical version of a Cretan liar paradox;2 they
can be viewed as a physical analog of Godel’s incomple
ness theorem,3 involving two instances of the putative com
puter rather than self-referential computers.

The mathematics and impossibility results governing
partitions underlying computation bear many parallels w
that governing conventional computer science models. S
tion III explicates some of that mathematical structure,
volving topics ranging from error correction to the~lack of!
transitivity of the property of computational predictabilit
among multiple distinct computers. In particular, results
presented concerning physical computation analogs of
mathematics of Turing machines, e.g., ‘‘universal’’ physic
computers and Halting theorems for physical computers
addition, an analog of algorithmic information complexit
‘‘prediction complexity,’’ is elaborated. A task-independe
bound is derived on how much the prediction complexity
a computational task can differ for two different referen
universal physical computers used to solve that task. T
bound is similar to the ‘‘encoding’’ bound governing ho
much the algorithmic information complexity of a Turin
machine calculation can differ for two reference univer

2Whereas the liar paradox can be demonstrated in many w
perhaps the simplest is the statement ‘‘This sentence is false.’’
statement can be neither true nor false; if it is true, it is false,
vice versa. This is generally attributed to Epimenides~‘‘Epi-
menides, the Cretan said that all Cretans are liars.’’!.

3This theorem states that in any sufficiently powerful reason
formalism, either there must be statements that are true but
proveable or the formalism must be self-contradicting.
8-2
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COMPUTATIONAL CAPABILITIES OF PHYSICAL SYSTEMS PHYSICAL REVIEW E65 016128
Turing machines. It is then proven that one of two cases m
hold. One is that the Hamiltonian of our universe proscrib
a certain type of computation. The other possibility is th
unlike conventional algorithmic information complexity, i
physical computation analog is unique, in that there is o
one version of it that can be applicable throughout our u
verse.

Section IV presents a brief overview of how, the unp
dictability results notwithstanding, this paper’s formalis
might be used to gainfully view a universe as a~single! com-
puter. The implications of this paper’s results under such
identification are briefly discussed. This section then rela
the work presented in this paper to previous work in
literature, and ends with a discussion of future work.

Throughout this paper,B[$0,1%, R is defined to be the
set of all real numbers,∧ is the logicalandoperator, andNOT

is the logicalnotoperator applied toB. To avoid proliferation
of symbols, often set-delineating curly brackets will be us
surrounding a single symbol, in which case that symbo
taken to be a variable with the indicated set being the se
all values of that variable. So, for example, ‘‘$y%’’ refers to
the set of all values of the variabley. In additiono(A) is the
~potentially transfinite! cardinality of any setA, and 2A is the
power set ofA. uPU are the possible states of the un

verse, andÛ is the space of allowed trajectories throughU

~i.e., world lines of the universe!. SoûPÛ is a single-valued
map from tPR to uPU, with ut[ût the state of the uni-
verse at timet. Note that since the universe is microscop
cally deterministic~be it classical or quantum mechanical,
we adopt the many-worlds interpretation for the latter cas!,
ut for any t uniquely specifiesû. Sometimes there will be
implicit constraints onÛ. For example, we will assume i
discussing any particular computer that the spaceÛ is re-
stricted to world linesû that contain that computer.

Fully formal definitions and proofs are relegated to t
Appendix, so that the main text can concentrate on the f
damental concepts. Extra discussion and examples of t
concepts that would be too distracting in the main text
also presented in the Appendix; the reader is strongly enc
aged to consult the Appendix as needed. An earlier anal
addressing some of the issues considered in this paper ca
found in @33#.

I. A DEFINITION OF WHAT IT MEANS TO
‘‘PREDICT THE FUTURE’’

A. Definition of a physical computer

For the purposes of this paper, a physical computer
‘‘predict the state of a system ahead of time’’ if the compu
is a general emulator of the physical dynamics of suc
system, an emulator that operates faster than that dynam
So given some timeT.0, and given some desired informa
tion concerning the state of some system atT, our goal is to
have the computer output that desired informationbefore
time T. To that end we allow the computer to be ‘‘initialized
at time 0, with different ‘‘input,’’ depending on the value o
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T, on what information is desired, perhaps on informati
about the current state of the state whose future is be
predicted, etc.

To make this concrete, leta be a characteristic of the stat
of the physical universe at timeT. We indicate a specification
that we wish to knowa as aquestion qPQ. Soq says what
a is for any state of the universe at timeT, i.e.,q is a single-
valued mapping from the state of the universe atT to an
answera.

Since û fixes uT and ~for a deterministic universe! vice
versa, we can generalize this by dispensing with specifica
of T. In other words, we can recast anyq as a single-valued

mapping fromû to a. Soq fixes a partition over the spaceÛ,

and any pair~a, q! delineates a region inÛ.
In general, the space$a% of potential answers of the uni

verse ~i.e., the set of partition element labels! can change
depending onq, the question concerning the universe~i.e.,
the partition!. This means that we need to concern oursel
not just with the relation between computers’ answer valu
but also with the relation between the associated space
possible values~e.g., the number 1 is both an element of t
spaceB and of the space$1,4,5%, two cases that must b
distinguished!. We will write the space$a% asA(q) when we
need to indicate its dependence onq explicitly. As much as
possible, the extra complexity associated with keeping tr
of A(q) is relegated to the fully formal analysis in the Ap
pendix.

Without the accompanyingq, a value ofa, by itself, is
meaningless. So we must know whatq we are answering
when we read the computer’s output. Accordingly, we wa
the output of our computer to give a questionq together with
an associated prediction fora. Note also that very often the
question—a mapping from answers to associated sets of
sible states of the real world—is only stored in a hum
user’s memory. In this case that aspect of the human is
plicitly part of the computer.

Finally, choose some real numbert, where 0,t,T. Our
goal is that for anyqPQ there is an associated initial ‘‘in
put’’ state of the computer at time 0 which ensures that
time t our computer’s output is a correct prediction fora,
i.e., which ensures that for theû of the universe anda of our
computer,q(û)5a.

Now consider in more detail a conventional computer t
consists of a fixed physical dynamical system e.g., a w
station/human pair. Together with that system we have a
of mappings by which some of that system’s observable
grees of freedom are interpreted as~perhaps binary! ‘‘in-
puts,’’ and some as ‘‘outputs.’’ The input and output degre
of freedom can overlap, and may even be identical. Since
computer exists in the physical universe its state at any
mentt is specified byut . Therefore both the interpretation o
some of the computer’s degrees of freedom as ‘‘inputs’’ a
some as ‘‘outputs’’ are single-valued mappings fromuPU to
a space of inputs and of outputs, respectively. With the in
time 0 and output timet implicit, we can recast the domain
of those mappings asÛ rather thanU.

All of this holds whether the computation of outputs fro
inputs proceeds in a ‘‘digital’’ or ‘‘analog’’ fashion. The only
8-3
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DAVID H. WOLPERT PHYSICAL REVIEW E 65 016128
restriction is that we are interested in outputs that can se
as falsifiable rather than probabilistic predictions. This
striction will often be met even if the system being predict
is stochastic and the precise aspect of it that we are pre
ing is a function of the associated distributions. For exam
whether the temperature of a particular system falls withi
certain range at a particular time is a falsifiable predicti
~See also Example 1 below.! In any case, the extension t
having the computer’s output be interpreted as a probab
distribution is fairly straightforward—see the discussion ju
before Theorem 2 in Sec. II A.

Generalizing these considerations, we define a compu

input to be a mappingX(•) from ûPÛ to a space of inputs

$x%. Intuitively, it is a partition ofÛ ~see the Appendix!. So,
for example, ‘‘initialization’’ of a computer as conventionall
conceived, which sets thet50 state of a physical system
underlying the computer, is simply a special case.~In that
special case, the value taken by the input mapping differs
û and û8 if the t50 state of the computer input portion o
the universe, as specified byû, differs from thet50 state of
the computer input portion of the universe as specified
û8.! Similarly, we can define a computer’soutput to be a
mappingY(•) from ûPÛ to a space of outputs,$y%. In such
an output partition, the set$y% consist of all pairs$yq
PQ,yaPA(yq)%, for someQ and associatedA(•). We say
that yq is the ‘‘question answered by the computer,’’ andya
is ‘‘the computer’s answer.’’

A physical computerthen is simply the double of an inpu
partition and an associated output partition. As considere
this paper, all that computation amounts to is the delinea
of the logical implications for which element~s! of the output
partition containû, given that a particular provided inpu
partition element containsû. In other words, it amounts to
delineation of the intersections of the sets making up$x%
with those making up$y%. We are interested in whether th
element of the output partition induced by a particular inp
correctly describes the universe, as restricted by that in
So, in particular, we are not considering counterfact
‘‘computation’’ involving premises that conflict with the ac
tual state of the universe.

Example 1 (detailed explication of conventional pred
tion of the future). Say that our universe contains a systemS
external to our computer that is closed in the time interval@0,
T#, and letu be the values of the elements of a set of cano
cal variables describing the universe.a is thet5T values of
the components ofu that concernS, measured on some finit
grid G(UT). q is this definition ofa with G and the like
fully specified.~So q is a partition of the space of possib
uT , anda is an element of that partition.! Q is a set of such
q’s, differing in G, whose associated answers our compu
can ~we hope! predict correctly. By determinism, under th
convention that we are interested in questions concerning
t5T state of the universe, we can replace any gridG(UT)
with a grid G(Û).

The input to the computer is implicitly reflected in itst
50 physical state, as our interpretation of that state. In
example~though not necessarily in general!, that input speci-
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fies what question we want answered, i.e., whichq and as-
sociatedT we are interested in. It also delineates one
several regionsR#Û, each of which, intuitively, gives the
t50 state ofS and S’s Hamiltonian. Throughout each suc
R, the systemS is closed from the rest of the universe durin
tP@0,T#. Since the preciseR delineated specifies a set o
possible values ofu0 in full, not just ofS’s t50 state, it is an
element of a~perhaps irregular! finite precision grid over
Û,G8. If, for some R, q(û) has the same value for allû
PR, then this inputR uniquely specifies whata is for any
associatedû. If this is not the case, then theR input to the
computer does not suffice to answer questionq. So for anyq
and regionR both of which can be specified in the compu
er’s input,R must be a subset of a regionq21(a) for somea.

Implicit in this definition is some means for correctly ge
ting the information of the valueR into the computer’s input.
In practice, this is often done by having had the compu
coupled toS sometime before time 0. As an alternativ
rather than specifyR in the input, we could have the inpu
contain a ‘‘pointer’’ telling the computer where to look to g
the informationR, in which case the same input can giv
different outputs.~The analysis of this paper holds no matt
how the computer gains access toR.!

In practice the input, givingR, q, andT, is the label of an
element of a partition over an ‘‘input section’’ of our com
puter. In such a case, the input is itself an element of a fi
precision grid overU0 ,G9(U0). So an element ofG9 speci-
fies an element ofG ~namelyq! and element ofG8 ~namely
R!. As usual anyG9(U0) can be reexpressed as a gr
G9(Û), under the convention that we are interested in inp
imposed on thet50 state of the computer. Note that if in
tialization were to be at a timetÞ0, it would correspond to a
different grid G9(Û), in general, since the values of th
computer’s input degrees of freedom may vary in time.

Given its input, the computer~tries to! form its prediction
for a by first running the laws of physics on au0 having the
specified value as measured onG8, according to the speci
fied Hamiltonian, up to the specified timeT. The computer
then appliesq(•) to the result. Finally, it ensures that th
prediction fora is in its output section at timet. More pre-
cisely, there is a fourth finite precision gridG- over Ut
defined by the state of the computer’s output section at t
t. The computer uses that grid to ‘‘write out’’~what is inter-
preted as! its prediction for which region inU the universe
will be in at T, that prediction being formally equivalent to
prediction of a region inÛ. The goal is to have it do this
with the correct value ofa, by time t,T.

Since G-(Ut) induces a grid overÛ,G-(Û), we can
dispense with the ‘‘timet,T’’ stipulation; the goal is simply
to have the universe be in the element ofG-(Û) associated
with the correct value ofa. As with changing the time of
input, changing the timet of output will change the grid
G-(Û), in general.

Consider again the case where there is in fact a cor
prediction, i.e., whereR is indeed a subset of the regio
q21(a) for somea. For this case, formally speaking, ‘‘al
the computer has to do’’ in making its prediction is take t
regionR and questionq delineated in its input and recogniz
8-4
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COMPUTATIONAL CAPABILITIES OF PHYSICAL SYSTEMS PHYSICAL REVIEW E65 016128
which region in the partitionq contains the regionR. Then it
must output the label of that region inq onto its output. In
practice, though,q andR are usually ‘‘encoded’’ differently,
and the computer must ‘‘translate’’ between those encodi
to recognize which regionq21(a) containsR; this transla-
tion constitutes the ‘‘computation.’’ Note that all of this hold
even if S’s dynamics is stochastic, and/orS’s state is never
deterministically fixed to greater precision that that ofG8.
Our computer’s output provides a delineation of a subreg

of ûPÛ; thoseû such thatq(û)5a. It provides more struc-
ture than just that though, e.g., two different outputs can h
the same answer even though they delineate different
gions, due to having different questions.@See Definition
2~iii ! in the Appendix.#

Finally, note that despite the nomenclature, a ‘‘questi
answer’’ pair is not a premise and associated conclusion
the sense of an if-then statement. Rather it is just a con
sion. The associated premise~i.e., the if clause! is encoded in
the input.

The definition of a physical computer presented here is
broader than conventional computers that work by proce
like that outlined in Example 1, as the following discussi
explicates.

Example 1 continued. The definition of a physical com
puter does not require that an input value always implie
unique output, as it does in Example 1. In addition, the co
puter in Example 1 has the laws of physics explicitly bu
into its ‘‘program.’’ But our definition allows arbitrary ‘‘pro-
grams.’’ Our definition also allows other kinds of informatio
input to the computer besides that of Example 1. Furth
more, we will only need to require that there besomeinput
to the computer that, by accident or by design, induces
correct output. This means we will not even require that
computer’s initial statex ‘‘accurately describes’’ thet50 ex-
ternal universe in any meaningful sense.„This is reflected in
the fact that our formal generalization of Example 1 p
serves analogs of the gridsG @in Q(•)#, G9 @in X(•)#, and
G- @in Y(•)#, but not of the gridG8.…

In fact, since the partitionX(•) can reflectanyattribute of
û, it need not even involve thet50 state of some physica
device. Indeed, our definition does not even explicitly del
eate the particular physical system within the universe
we identify with the computer.~A physical computer is sim-
ply an input partition together with an output partition.! This
means we can even choose to have the entire universe
the computer’’~see Sec. IV!. In addition, our definition does
not enforce having inputs be ‘‘set’’ before outputs are ‘‘rea
in any sense. It is only concerned with the entire worldlin
of the universe.

As another example of the freedom to extend Example
note that in practice we may want to physically couple o
computer to the external universe, for example via an ob
vation apparatus that initializes the computer’s inputs so
they reflect information about the system being predict
Such a coupling would be reflected inû. If we wish, though,
we can exploit the freedom in its definition to modify th
input mapping, in such a way that it too directly reflects th
kind of coupling. For example, under the proposed mod
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cation, if we want the input section of the computer’s und
lying physical system to be a bitb1 whoset50 state equals
the t521 state of some bitb2 concerning the external uni
verse, then we could haveX(û)5X„b1(u0),b2(u21)…
5b1(u0) if b1(u0)5b2(u21), and have it equal a specia
‘‘input error’’ value otherwise. If we do have a physical cou
pling mechanism, and if that mechanism is reliable
something reflected inû— then this third, error, setting will
never occur, and we can ignore it. However, use of t
modified X allows us to avoid explicitly identifying such a
mechanism and simply presume its existence. So long as
third setting never occurs, we can analyze the systemas
thoughit had such a~reliable! physical coupling mechanism

We can also modify Example 1 in other ways that do n
involve input. For example, we can haveS be open~or per-
haps even be the entire universe!. We can also have the com
puter observe the system being predictedafter initialization
~so that that initialization only serves to specify what shou
be observed!. This is one of the major reasons why we do n
require that the valuex uniquely fixesYa(û), to not preclude
the possibility ofya being based on observations of the e
ternal world that occur after the setting of the compute
input. ~Other reasons for not havingx fix ya arise in the
context of weak predictability; see the discussion in the A
pendix preceding Example 2.! Other examples of how to
modify Example 1 are presented below in the discussion
retrodiction and control.

We will sometimes find it useful to consider acopyof a
particular computerC5(X,Y). This is any computerC8
5(X8,Y8) where$x8%5$x%, $y8%5$y%, and the~set-valued!
function of all outputs that are possible given a particu
input is the same for both computers. In other words, e
though the functionsX8(•) and Y8(•) may differ from
X(•) andY(•), respectively, the logical implications relatin
values ofx8 and y8 are the same as those relating valuex
and y. So both computers have the same input-output m
ping. As a particular example, if a scientist at a particu
time ~i.e., a computer! C in some spaceÛ is transformed into
a copyC8 in someÛ8, there is no way that~s!he can ascer-
tain that that transformation has occurred. The two scient
interpret their input as an element in the same space an
response provide the same answer~whether that answer is
generated via prediction and/or observation—see the dis
sion below Theorem 2 in Sec. II A!.

Example 1 continued. Consider again the computer in Ex
ample 1. Recall that if the initialization time 0, question tim
T, and/or output timet are changed, then in general the pa
titions X and/or Y may change. So in particular, the time
translated version of a computerC differs fromC, in general.
However the ‘‘time-translated version ofC’’ is a copy of C
~or at least it makes sense to interpret the term that way
long as the laws of physics are time-translation invarian!.
Similarly, a spatially translated version ofC is only a copy of
C in general, rather than identically equal toC. So formally
speaking, the sequence of computations the box on your d
makes over a period of a month is a set of physical comp
ers, all copies of one another, applied to the sameû.
8-5
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DAVID H. WOLPERT PHYSICAL REVIEW E 65 016128
B. Intelligible computation and distinguishable computers

Consider a conventional physical computer, consisting
an underlying physical system whoset50 state setsX(û)
and whose state at timet setsY(û), as in Example 1. We
wish to analyze whether the physical system underlying
computer can calculate the future sufficiently quickly. In d
ing so, sometimes we will not want to allow any of th
‘‘computational load’’ of the calculation to be ‘‘hidden’’ in
the mappingY(•) by which we interpret the underlying
physical system’s state as an output, thereby lessening
computational load on that underlying physical syste
Stated differently, we may wish to ensure that the out
corresponding to some state of the underlying physical s
tem û is ‘‘immediately and readily intelligible,’’ rather than
allow nontrivial subsequent computing to be needed be
that corresponding output can be discerned.

One way to formalize this intelligibility constraint woul
entail imposing capabilities for self-reference onto our co
puter. This has the major disadvantage of restricting the
of physical computers under consideration. As an alternat
to formalize the notion that a computer’s inputs and outp
be ‘‘intelligible,’’ here we consider universes having anoth
computer which can consider the first one. We then req
that that second computer be able to directly pose bin
questions about the first computer’s prediction (yq , ya),
without relying on any intervening ‘‘translational’’ compute
to interpret the components ofû concerning that first com
puter as a prediction.~Note that nothing is being said abo
whether such a question can be correctlyansweredby the
second computer, simply whether it can beposed to that
computer.! So we wish to be able to ask if the first compu
er’s output is one particular value, whether it is another p
ticular value, whether it is one of a certain set of values, e
Intuitively, this means that the setQ for the second compute
must contain binary functions ofY(•) of the first computer.
Finally, we also require that the second computer be si
larly intelligible to the first one.

These two requirements are how we impose the intui
requirement that both computers be ‘‘readily intelligible’’ a
predictions concerning reality; they must be readily inte
gible and checkableto each other. More precisely, define an
intelligibility function of any Û-partition p to be a binary-

4More prosaically, to motivate intelligibility we can simply not
that we wish our computer to be flexible enough that there are
restrictions on the possible questions one can pose to it. In par
lar, we wish to be able to pose to a computerC1 any prediction
question we can formulate. In particular, this means we wish to
able to pose toC1 any questions concerning well-defined aspects
the future state ofC2. Now consider havingC2 be a conventional
computer based on an underlying physical system. Then we wa
be able to predictC2’s output at timet as Y2(ut). Therefore in
addition to any other questions we might want to be able to pos
it, we want to be able to pose toC1 questions involving the value
Y2(mt) ~e.g., is that value equal to somew1 ? To somew1 or w2 ?
To thatw1 or some otherw3? Etc.!. We wantC1 to ‘‘understand’’
y2 sufficiently well to be able to pose binary-valued questions c
cerning it. This is equivalent to requiring intelligibility.
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valued function of the elements of that partition.~We call a
set of such functions anintelligibility set.! If the set of ques-
tions we can pose to a computerC includes all such func-
tions, we say thatp is intelligible to C. For such a case,C
can have posed any question concerning the universe as
sured onp. This flexibility in C ensures thatC’s output par-
tition is not ‘‘rigged ahead of time’’ in favor of some particu
lar question concerningp so that all aspects ofp(û) are
accessible toC as questions. The obvious modifications a
assumed if we talk aboutp being intelligible toC ‘‘with
respect to some intelligibility setF.’’ 4

A problem with this definition of intelligibility is that
there cannot be a computer to which one can pose all p
sible binary questions concerning the physical world.~This is
established formally as Theorem 1 in the Appendix.! The
problem arises when we try to pose intelligibility function
concerning the computerC’s output partition toC itself. In-
tuitively, it is not possible for the set ofC’s question parti-
tions to include the~larger! set of all binary-valued functions
of those partitions.

To circumvent this problem, from now on we implicitl
restrict any intelligibility function concerning an output pa
tition Y to bequestion independent, i.e., to not depend on the
precise question encoded iny, only on the answer compo
nent. Intuitively, restricting ourselves to these kinds of int
ligibility functions means we are only requiring that thelabel
of a partition element predicted by one physical computer
directly readable by the other computer, not that the full p
tition element including the first computer’s question be
rectly readable. Given the restriction to such questio
independent intelligibility functions, we say that tw
physical computersC1 andC2 aremutually intelligibleif the
output partition ofC2 is intelligible to C1 and vice versa.

Formally speaking, to make sure that the range of an
telligibility function matches up with that of the answer com
ponent of an element of an output partition, often we m
consider the full prediction partition, Yp(û)
[„A(Yq(û)),Ya(û)…, rather than justYa(û). For example,
this is the case in the formal definitions of weak and stro
predictability~see the Appendix!. For pedagogical simplicity,
though, we will often just refer to the ‘‘computer’s answe
or the ‘‘computer’s prediction’’ rather than explicitly stat
whether we meanYp . As always, such formal concerns a
dealt with in full in the Appendix.

Finally, our unpredictability results will rely on our two
physical computers being distinct from one another. Th
must not be so intertwined that how we can initialize one
them is determined by how we initialize the other. Mo
formally, just as we require that all input valuesxP$x% are
physically realizable states of a single physical computer
all pairs of the two computer’s inputs values must be phy
cally realizable states of the two physical computers. Wh
this is the case we say that the computers arepairwise (input)
distinguishable. When this is the case for each pair of a set
computers, we say that the set is pairwise-distinguisha
and when it is possible to have any joint combination of t
input values of all members of the set we say we havefull
distinguishabilityfor that set.
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C. Predictable computation

We can now formalize the concept of a physical comp
er’s ‘‘making a correct prediction’’ concerning another com

puter’s future state. We say that aÛ-partition p is weakly
predictable to C if two conditions hold. First,p must be
intelligible to C. Second, for every intelligibility function
concerningp, f, 'xP$x% that weakly induces f, i.e., a value
x such thatX(û)5x forcesC’s prediction to equalf (û). We
will say a computerC8 with outputY8(•) is weakly predict-
able to another computerC, and writeC.C8, if the answer
partition of C8 is weakly predictable toC. If we just say
‘‘predictable’’ it will be assumed that we mean weak predi
ability.

See the variants of Example 2 in the Appendix for illu
trations of weakly predictable sets of computers. These d
onstrate, among other things, that the ‘‘.’’ relation need not
be transitive. In fact, even if someC1 could predictC2’s
input simultaneously with predictingC2’s answer, it still
would not follow thatC1 can predict somep just becauseC2

can. This is becauseC1 has no ability to set its input to
ensure thatx2 is one of the values involved inC2’s predict-
ing p. ~Strong predictability, introduced below, rectifies this!

This definition of predictable is very broad. It does n
require that there be a sense in which the information in
to C is interpretable as a description of the external unive
~This freedom is what allows us to avoid formalizing th
concept of whether some input does or does not ‘‘corre
describe’’ the external universe.! Indeed, we do not even re
quire that Yq(û)5 f . Even if the computer gets confuse
about what question it is answering, we give it credit if
comes up with the correct answer to our question. In ad
tion, consider some intelligibility functionf and associatedx.
In the definition of predictability we allow the possibility o
two û’s that are both consistent with thatx and that both
obey Ya(û)5 f (û), but that nonetheless have differe
Ya(û). Accordingly, lack of predictability implies merely
that for somef a correct answer cannot be guaranteed, ra
than that a wrong answer is assured.

Furthermore, while motivated by the task of predicti
the future, the definition of weak predictability present
here is more general, concerning any computation that
be cast in terms of inputs, questions about the universe,
associated answers. For example, no times like 0,t, or T
occur in the definition of ‘‘predictable’’ or in any of the term
going into that definition. Moreover, even when there
some temporal ordering that relates the inputs, the outp
and the prediction involved in the computation, we need
haveT.t.0 as in Example 1. We could just as easily ha
T,t,0 or evenT,0,t. So the results presented belo
will establish the unpredictabilityof the pastas well as of the
future. They also can be viewed as establishing the fallibi
of any observation apparatus and of any control appara
These points will be returned to below.

Finally, it is important to realize that the requirement
intelligibility can be removed from the definition of predic
ability, and many of the results presented below will s
hold ~e.g., Theorem 2 will still hold!. That requirement can
be helpful in extensions of this paper’s analysis, howev
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and certainly seems ‘‘natural.’’ Hence its inclusion in o
definition. See the discussion leading up to Definition 4
the Appendix for more discussion of this point.

II. THE UNPREDICTABILITY OF THE FUTURE

A. The impossibility of an assuredly correct prediction

Even if we can pose all the questions in some set t
computer, that says nothing about whether by appropr
choice of input that computer can always be assured of
rectly answering any question from that set. In fact, it tur
out that even if we restrict attention to question-independ
intelligibility sets, no physical computer can be assure
correct in its predictions concerning the future.

Whereas the impossibility expressed by Theorem 1
lows from cardinality arguments and the power set nature
intelligibility sets, this impossibility of an assuredly corre
prediction follows from the presence of the negation opera
in ~question-independent! intelligibility sets. As an example
of the logic underlying the proof, consider a pair of compu
ers predicting the future as in Example 1. Have both of
computers have answer subsections that are binary, and
initialization time equal 0 and question time equalT. Have
one of the two computers predict the other’s timeT output
bit and then halt and freeze its output, all by some timet
,T, whereas that other computer predicts the negation
the first one’s timeT output bit just before it too halts. Sinc
both computers’ output calculations must halt byt, they will
contradict each other when the prediction timeT arrives.
Therefore they cannot both be correct in their predictions

This kind of reasoning can be extended to apply to a
pair of physical computers, not just ones that work as
Example 1. For example, no ‘‘halting and freezing’’ is r
quired in general.~Indeed, in practiceC cannot guarantee
that its output will be frozen with a particular output valu
that does not change after some timet, since it is always
possible that an outside system comes in and perturbsC.!
Even the times 0,t, andT are superfluous. This is formally
stated in the following theorem.

Theorem 2. Consider any pair of distinguishable physic
computers$Ci : i 51,2%. It is not possible that bothC1.C2

andC1,C2.

It should be emphasized that Theorem 2 holds no ma
how large and powerful our computers are; it even holds
the ‘‘physical system underlying’’ one or both of our com
puters is the whole universe. It also holds if insteadC2 is the
rest of the physical universe external toC1. As a particular
instance of this latter case, the theorem holds even ifC1 and
C2 are physically isolated from each other for allt.0. ~Re-
sults similar to Theorem 2 that rely on physical coupli
between the computers are presented in@33#.!

Rather than viewing it as imposing limits on compute
Theorem 2 can instead be viewed as imposing limits on
computational capabilities of the universe as a whole. Fr
this perspective that theorem establishes that the univ
cannot support parallel computation in which all the nod
are sufficiently powerful to correctly predict each other’s b
8-7
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DAVID H. WOLPERT PHYSICAL REVIEW E 65 016128
havior. In addition, it is possible to generalize this pape
formalism to stochastic universes and/or computers. In
extension Theorem 2 takes the form of saying it is imp
sible for the probability of correct prediction for two com
puters to both equal 1. An open question is what the high
« is such that two computers can simultaneously have i
their probability of correct prediction.~See the discussion in
the Appendix just before Lemma 1.!

B. Implications of Theorem 2

Let C be a computer supposedly capable of correctly p
dicting the future of any systemS if appropriate information
concerning the initial state ofS is provided toC, as in Ex-
ample 1 above. Assume thatC is not so powerful that the
universe is incapable of supporting a copy ofC in addition to
the original.~This is certainly true of anyC conceivably built
by humans—see the formal definition of a copy of a physi
computer in Definition 3 in the Appendix.! HaveSbe such a
copy of C. We assume that for any pair oft50 input values
for C, there is at least one world line of the universe in whi
C’s input is one of those values and the other value con
tutes the input ofC’s copy ~i.e., we have input distinguish
ability!.

Applying Theorem 1 to our two computers, we see th
there is a finite intelligibility set that is not intelligible toC,
i.e., there are questions concerning anS that cannot even be
posed toC. ~More formally, there is either such a set forC or
for its copy S.! In addition, by Theorem 2, there is a finit
question-independent~and therefore potentially poseable! in-
telligibility set concerningS that is not predictable byC. In
other words, there must be a question-independent intel
bility function concerningS thatC cannot predict unerringly
no matter what the input toC.

The binary partition overUT induced by this unpredict
able intelligibility function constitutes a question concerni
the time T state ofS. In addition every one of the set o
potential inputs toC corresponds to a subset ofU0 , and
therefore corresponds to a subset of the possible states oC’s
‘‘input section’’ at time 0.@In Example 1,X(•) is set up so
that every element in$x% corresponds to one and only on
state ofC’s input section at time 0.# Similarly, every output
of C corresponds to a subset ofUt and therefore a subset o
the possible states ofC’s ‘‘output section’’ at timet. Accord-
ingly, our result means that there is no input toC at time 0
that will result in C’s output at timet having the correct
answer to our question concerning the timeT state ofS. For
0,t,T, this constitutes a formal proof that no comput
can predict the future faster than it occurs.~Or more pre-
cisely, that the universe cannot support more than one c
of such a computer.!

This means, in essence, that Laplace was wrong: eve
the universe were a giant clock, he would not have been
to reliably predict the universe’s future state before it o
curred. Viewed differently, Theorem 2 means that regard
of noise levels and the dimensions and other characteri
of the underlying attractors of the physical dynamics of va
ous systems, there cannot be a time-series prediction a
rithm @9# that is always correct in its prediction of the futu
state of such systems.
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Note that there is no requirement that the initializati
time, question time, and/or output time of the computerS’s
partitions equal 0,T, andt, respectively, the values they hav
for C. All that is required is that thisS be a copy ofC. In
particular the possibility is allowed thatS is a temporal trans-
lation of C, either forward or backward in time.

In addition, as mentioned previously, the result also ho
when the initialization time is 0 and the output time is som
t.0, but the question timeT,t. In other words, the com-
puter can run an arbitrarily long timepast Tand still must
make mistakes. Perhaps more surprisingly, the result
holds if not only isT,t, but in additionT,0. In this case
the result denies the possibility of assuredly correct ‘‘pred
tion’’ of what occurred in the time preceding initialization
Intuitively speaking, memory is just as fallible as predictin
the future. This should not be surprising. After all, no tem
porally asymmetric law like the second law arises in o
analysis, so all the resultsmustbe time symmetric. In fact,
the temporally~a!symmetric nature of the laws of the un
verse are irrelevant to Theorem 2—that theorem treats
entire universe’s world line as a single entity.

In opposition to this formal proof of the necessary fal
bility of retrodiction, one is tempted to argue that no cont
diction results if I ask two computers to record each othe
past states, only with one of them negated~to try to follow
along with the proof of Theorem 2!. So the claim that Theo-
rem 2 still holds forT,0 cannot be true, it would appea
and infallible retrodiction is allowed. To resolve the confli
between this intuitive argument and the explicit
T-independent nature of the proof of Theorem 2, note t
Theorem 2 only says that there issomerecording at which
the computer must fail. The set of all such retrodictions e
compasses many that are quite complicated. In particular
liar paradox at the heart of Theorem 2 will arise when t
recordings concern the dynamic pre-images of those fu
states that establish the fallibility of prediction the future.

To illustrate this in more detail, first note that if two com
puters are physically isolated from each other for all tim
there is no way each can reliably record the others’ past s
So our two putative retrodicting computers must be phy
cally coupled, and therefore must be open systems. N
consider a conventional digital version of such a computeC,
whose output partition elements are labeled by thet5t
states of its output bits. So each possible output ofC is the
set ofall possiblestates of the entire universe that are co
sistent with some particulart5t pattern onC’s output bits.
Call such a set, of all possible states consistent with
pattern onC’s output bits at timet, ‘‘aligned’’ with that
pattern/time pair. In general, sinceC is open, a set of state
that are aligned with an output pattern ofC’s at timet will
not dynamically map to a set that is aligned with those bits
an earlier timeT,0. ~Instead, generically, the temporal pro
jection of those states back in time will be consistent w
multiple output patterns overC at that earlier time, with each
such pattern accompanied by only a proper subset of all p
sible associated states of the external universe.! In the lan-
guage of Example 1, whileG-(Ut) is defined purely in
terms of thet5t state ofC’s output bits, this need not be th
case forG-(UtÞt).
8-8
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COMPUTATIONAL CAPABILITIES OF PHYSICAL SYSTEMS PHYSICAL REVIEW E65 016128
So to induce the liar paradox we pose toS a question
concerningt5T that does not concern some set of sta
aligned withC’s output bits at that time, i.e., is not answer
by the pattern on those bits at that time. Rather the ques
we pose concerns the pre-images~over U! of the individual
t5t U-space partition elements that indexC’s t5t outputs.
The same is true for the computerC’s retrodiction concern-
ing S. It is these kinds of questions that establish the fallib
ity of retrodiction.

While these results concerning both prediction and retr
iction hold if C and S are isolated from one another for a
t.0, they also hold ifC and S are coupled at such times
Indeed, they hold no matter what the form of such coupli
So, in particular, we can have the coupling consist ofC’s
‘‘observing’’ some aspect ofS. In fact, this is the natural way
to try to do retrodiction. Accordingly, the impossibility o
unerring retrodiction implies the impossibility of unerrin
observation.

As a detailed example, consider a conventional obse
tion experiment, where what variable inS is observed at time
t is determined by characteristics of the experimental ap
ratus at that time. In other words, it is determined by cert
characteristics ofu(t), i.e., by certain characteristics ofû,
i.e., by whereû is in a particular partition overÛ. Each
element in that partition corresponds to a different variable
be observed, i.e., to a different question. So in such conv
tional observation, there is an implicit question-valued pa
tion of Û. The ‘‘observation’’ consists of providing an an
swer to some associated question. In other words,
conventional observation the choice of what to observe,
gether with the resultant observation, constitutes an ou
partition. The input partition initializing the experiment the
is a way of forcing~a û which gives! an output partition with
the desired question, hopefully also having the correct a
ciated answer.~Note that in this interpretation of a physic
computer as an observation device, its input will in gene
not uniquely fix its output answer, unlike the case with p
diction discussed in Example 1.!

So observation is simply an instance of physical com
tation. As a result, Theorem 2 establishes the impossibility
a deviceC that can, infallibly, take any specification of som
characteristic of the universe as input, and then observe
value of that characteristic. This impossibility holds indepe
dent of considerations of light-cones and the like, and in f
holds just as well in a universe withc5` as it does in ours.
~Alternatively, the time at which the characteristic is to
observed can be specified in the computer’s input, and th
fore can be far enough into the future so that the light-co
emanating from the setting of that input can intersect w
that of the characteristic being observed.! In all this, Theo-
rem 2 establishes that any putative general-purpose obs
tion apparatus must, for some system to be observed, ma
mistake in its claimed observation of that system.

This unobservability constitutes a sort of non-quantu
mechanical ‘‘uncertainly principle.’’ Just like the Copen
hagen version of the quantum mechanics uncertainty p
ciple, the physical computation uncertainty principle rel
on having an ‘‘intelligent’’ system perform the observatio
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In contrast to the quantum mechanics case, however, in
physical computation version of the uncertainty principle
‘‘intelligent observational system’’ is given a formal defin
tion ~as a physical computer!. See also the discussion in Se
IV A.

There is nothing in the math that forcesC to play a ‘‘pas-
sive observational role’’ in the coupling withS. So we can
just as well view Theorem 2 as establishing the impossibi
of an apparatus capable of ensuring that there is no disc
ancy between a value in its ‘‘answer section’’ and an asso
ated characteristic of a systemS external toC. ~Note that
while weak predictability does not require thatx fixes the
value ofya independent of the initial state ofS, nor does it
forbid x to fix ya ; it only requires thatya correctly answers
the associated question concerningS.! Accordingly, there is
no such thing as a general-purpose controller that works
fectly, in all situations.

These impossibility results hold even if one tries to ha
the input to the computer explicitly contain the correct val
of the prediction or observation.~Note that since the univers
is single-valued and deterministic, such a value must ex!
Impossibility also obtains if the input is stochastic, since
holds for each input value individually.

III. THE MATHEMATICAL STRUCTURE RELATING
PHYSICAL COMPUTERS

There is a rich mathematical structure governing the p
sible predictability relationships among sets of physical co
puters, especially if one relaxes the presumption that they
pairwise input-distinguishable. This section presents som
that structure.

A. The graphical structure over a set of computers
induced by weak predictability

Theorem 2 directly addresses predictability relatio
within pairwise-distinguishable sets of multiple compute
However, one can also use it to derive results for the pred
ability relationships within other types of sets of compute
For example, consider a set ofn physical computers$Ci%
such thatC1.C2.¯.Cn.C1. If that set is only pairwise
distinguishable, we can haveC1.C2.¯.Cn but still not
have C1.Cn. ~See Example 29 in the Appendix.! So it
would seem that Theorem 2 does not preclude havingCn

.C1, i.e., does not preclude predictability cycles. It tur
out, though, that such cycles are impossible if one consid
sets that are more than just pairwise distinguishable. An
ample is the following corollary of Theorem 2.

Corollary 2. It is not possible to have a~fully ! distinguish-
able set ofn physical computers$Ci% such thatC1.C2

.¯.Cn.C1.

What are the general conditions under which two comp
ers can be predictable to one another? By Theorem 2
know they are not if they are input-distinguishable. Wh
about if they are one and the same? No physical comput
input-distinguishable from itself, so Theorem 2 does not
ply to this issue. However, it still turns out that Theorem 2
implication holds.
8-9
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Theorem 3. No physical computer is predictable to itse

Intuitively, this result follows from the fact that a com
puter cannot make as its prediction the logical inverse of
prediction. An important corollary of this result is that n
output partition, considered in isolation of any input par
tion, is predictable to a physical computer that has that o
put partition. Combining Theorem 3 and Corollary 2 a
identifying the predictability relationship with an edge in
graph, we see that fully distinguishable sets of physical co
puters constitute~unions of! directed acyclic graphs. The a
lowed graphical structure of other kinds of sets~e.g.,
pairwise-distinguishable ones! is not well understood a
present.

B. God computers, omniscience,
and variants of error correction

When considering sets of more than two computers, i
important to realize that while it is symmetric, the inpu
distinguishability relation need not be transitive. Accor
ingly, separate pairwise distinguishable sets of compu
may partially ‘‘overlap’’ one another. Similarly, stipulatin
the values of the inputs of any two computers in a pairwi
distinguishable set may force some of the other computer
that set to have a particular input value.

Corollary 2 does not apply to a pairwise-distinguisha
set. To analyze such sets, first define agod computerto be
any physical computer in a set of computers such that
other physical computers in that set are predictable to
god computer. By Theorem 2, no pairwise-distinguisha
set of computers can contain more than one god comp
There is at most one computer in any pairwise distingui
able set that can correctly predict the future of all other me
bers of that set, and more generally at most one that
accurately predict the past of, observe, and/or control
system in that set.

Even a god computer in a pairwise-distinguishable
may not be able to correctly predict all other computers in
setsimultaneously. The input value it needs to adopt to co
rectly predict someC2 may preclude it from correctly pre
dicting someC3 and vice versa. One way to analyze th
issue is to consider a composite partitionY233 defined by the
output partitions ofC2 and C3. We can then investigate
whether and when our god computer can weakly predict
composite output partition. To that end, define a computerC1

in a set of pairwise-distinguishable computers$C1,C2,...% to
be omniscientif the composite output partitionY2333¯ is
predictable toC1.

Now, in general, one might presume that two nong
computers in a pairwise-distinguishable set could have
property that, while individually they cannot predict ever
thing, considered jointly they would constitute a god co
puter, if only they could work cooperatively. An example
such cooperativity would be having one of the comput
predict when the other one’s prediction is wrong. It turns o
though, that under some circumstances the mere presen
some other third computer in that pairwise-distinguisha
set may make such error correction impossible, if that ot
computer is omniscient.
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As an example of this, say we have three pairwise dis
guishable computersC1,C2,C3, whereC3 always answers
with a bit @i.e., there does not existyq

3 such thatA(yq
3)£B#.

We wantC2’s output to ‘‘correct’’ C3’s predictions, and we
also want to have those predictions made byC3 ~potentially!
concernC1. So letC1 be intelligible toC3. Then it turns out
that due to Theorem 2, ifC1 is omniscient, it is not possible
that C2 always correctly outputs a bit saying whetherC3’s
answer is the correct response toC3’s question. This is stated
formally ~and then derived! asCorollary 3 in the Appendix.
This result even holds ifY233 is only intelligible to C1,
without necessarily being predictable to it.

Corollary 3 can be viewed as a restriction on the effica
of any error correction scheme in the presence of a~distin-
guishable! omniscient computer. There are other restrictio
that hold even in the absence of such a third computer.
example arises if we consider two distinguishable mutua
intelligible physical computersC1 and C2, where both
A(yq

1)#B andA(yq
2)#B ; yq

1P$yq
1% andyq

2P$yq
2%. For such

computers, it turns out that Theorem 2 means that it is
possible forC1 andC2 to be ‘‘antipredictable’’ to each other
in the sense that for each of them, the prediction they m
concerning the state of the other can always be made to
wrong by appropriate choice of input. This is proven asCor-
ollary 4 in the Appendix.

C. Physical computation analogs of Turing machines

There are several ways that one can relate the mathem
cal structure of physical computation to that of conventio
computer science. Here we sketch the salient concepts
some such relations between physical computation and
mathematical structure governing Turing machines~TM’s!.

A TM is a device that takes in an input string on an inp
tape, then based on it produces a sequence of output str
either ‘‘halting’’ at some time with a final output string
~when an internal ‘‘halt’’ state is entered!, or never halting.
As an alternative, the fact that the halt state has or has
been entered by any time can be reflected in a special a
ciated pattern in the output string, in which case the seque
of output strings can always be taken to be infinite. As e
plicated above, in the real world inputs and~sequences of!

outputs are elements of partitions ofÛ. So in one translation
of TM’s to physical computers, strings on tapes are repla
with elements of the partitionsX(•) andY(•). One way of
doing this is to have$x% be the set of all strings.$yq% then
consists of a single partitionq that divides upÛ the exact
same way as the input partition does, with the set of lab
A(q) being the set of all allowed infinite sequences
strings. For anyû, X(û) is an input string, andYa(û) is the
associated sequence of strings generated by running the
on that input string. HavingY(û) specify both the initial
string and the ensuing sequence of strings is analogous to
conventional way of implementing reversible computati
@2–6#.

Rather than through a set of internal states, read/w
operations, state-transition rules, etc., in this approach
transformation of inputs to outputs in a physical compute
achieved simply through the definition of the pair of an inp
8-10
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COMPUTATIONAL CAPABILITIES OF PHYSICAL SYSTEMS PHYSICAL REVIEW E65 016128
partition and output partition. For such a TM that declares
its output string whether it has halted, the physical compu
tion analog of whether a computation will ever halt is simp
whetherû is in some special subset of$y%.

In contrast to this approach, in the real worldX(•) and

Y(•) usually divide upÛ differently. In this they are analo
gous to TM’s with multiple tapes rather than convention
single-tape TM’s. One way to generalize this, motivated
the definition of predictability, is to have$x% as before, but
require of eachqP$yq% that A(q) is the set of all possible
sequences of strings. DifferentqP$yq% are then interpreted
as equivalent to questions ‘‘what sequence of output stri
ensures from some input strings?’’ for different s. ~In this
context the question-independent nature of weak predicta
ity is loosely analogous to a TM’s being able to overwrite t
‘‘question’’ originally posed on its tape when producing i
‘‘answer’’ on that tape.! We will adopt this identification
from now on, taking the physical computation analogue o
TM to be an input partition together with the answer co
ponent of an output partition.

This identification motivates several analogues of
Halting theorem. Since whether a particular physical co
puter C2 ‘‘halts’’ or not can be translated into whether i
output is in a particular region, the question of whetherC2

halts is a particular~question-independent! intelligibility
function ofC2. Correctly answering the question of wheth
C2 halts means predicting that intelligibility function ofC2.
In the context of physical computation it is natural
broaden the issue to concern all intelligibility functions
C2. Accordingly, in this analog of the claim resolved fo
TM’s ~in the negative! by the Halting theorem, one asks if
is possible to construct a physical computerC1 that can pre-
dict any computerC2. To answer this, simply consider th
case whereC2 is a copy ofC1. By applying Theorems 2 and
3 to this case, one sees that the answer is no, in agree
with the Halting theorem.~Even if one strengthens the notio
of predictability, as in Sec. III D, the answer is still no, b
Theorem 6 presented below. See also Corollary 4 in the
pendix.!

There exist a number of alternative physical compu
analogs of the Halting problem. Though not pursued
length here, it is worth briefly presenting one such alter
tive. This alternative is motivated by arguing that, in the r
world, one is not interested so much in whether the com
tation will ever ‘‘halt,’’ but rather whether the associated ou
put ~say conventionally ‘‘read’’ at some prespecified time! is
‘‘correct.’’ If we take correct to be relative to a particula
question, this motivates the following alternative analog
the Halting theorem: Given any set of physical comput
$Ci%, there is no member of that setC such that for every
C8P$Ci%, ~i! C8 is intelligible toC; and~ii ! for all questions
q8P$yq8%, there is anx value which inducesC to answer with
a 1 if and only if the answer ofC8 to q8 is correct. See
Theorem 4in the Appendix.

D. Strong predictability

At the other end of the spectrum from distinguishab
computers is the case where one computer’s input can
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another’s, by being observed by that other computer~or per-
haps even by setting that other computer’s input more
rectly!. It is when such relationships hold that many physic
computation analogs of members of the Chomsky hierarc
and particularly universal Turing machines, arise.

To capture such a relationship, we say that a computerC2

is strongly predictableto C1 ~or equivalently thatC1 can
strongly predict C2!, and writeC1@C2 ~or equivalentlyC2

!C1! if two conditions hold. First,C2 must be intelligible to
C1. Second, for every intelligibility function concerningC2,
f, and for everyx2, ' x1P$x1% thatstrongly inducesthe pair
( f ,x2). That is, there exists a value ofx1 such thatX1(û)
5x1 forcesYp

1(û) to equal„A( f ), f (û)… and reflects the fac
that X2(û)5x2 @or, viewed alternatively, forces it to be th
case thatX2(û)5x2#.

If C1 can strongly predictC2, then for anyx2 and asso-
ciated answer ya

2—for any computation C2 might
undertake—there is an inputx1 to C1 that is uniquely asso-
ciated with x2 and that causesC1 to output ~any desired
question-independent intelligibility function of! the associ-
atedy2. By ensuring thatX2(û)5x2, with x1 we ensure that
C1 is outputting~the appropriate intelligibility function of!
C2’s conclusion for the desired premise,x2. Intuitively, there
is some invertible ‘‘translating’’ map that takesC2’s input
and ‘‘encodes’’ it inC1’s input, in such a way thatC1 can
‘‘emulate’’ C2 running onC2’s input, and thereby produce
C2’s associated output. In this wayC1 can emulateC2, much
like universal Turing machines can emulate other Turing m
chines.~See the definition of a universal physical compu
below.!

Strong predictability of a computer implies weak predic
ability of that computer.~Unlike with weak predictability,
there is no such thing as strong predictability of a partitio!
So results concerning weak predictability that are not pre
cated on input distinguishability~which is impossible for
strong predictability! still hold if they are changed by replac
ing weak predictability with strong predictability. This in
cludes in particular Theorem 3 and Corollary 2~but not
Theorem 2!.

Weak predictability does not imply strong predictabilit
however. Moreover, the mathematics for sets of phys
computers, some of which are strongly predictable to e
other ~and therefore not distinguishable!, differs in some re-
spects from that when all the computers are distinguisha
~the usual context for investigations of weak predictabilit!.
An example is the following result, which shows that stro
predictability always is transitive, unlike weak predictabilit

Theorem 5. Consider three physical compute
$C1,C2,C3% and a partitionp, where bothC3 and p are
intelligible to C1.

~i! C1@C2.p⇒C1.p.
~ii ! C1@C2@C3⇒C1@C3.

Strong predictability also obeys the following result which
analogous to both Theorems 2 and 3.

Theorem 6. Consider any pair of~not necessarily distin-
guishable! physical computers$Ci : i 51,2%. It is not possible
that bothC1@C2 andC1!C2.
8-11
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DAVID H. WOLPERT PHYSICAL REVIEW E 65 016128
Many of the conditions in the preceding results can
weakened and the associated conclusions still hold~e.g., we
can weaken the restriction that intelligibility functions ha
image space#B.! These weakened versions are usua
more obscure, though, which is why they are not presen
here.

A TM T1 can emulate a TMT2 if for any input forT2, T1

produces the same output asT2 when given an appropriatel
modified version of that input.~Typically, the ‘‘modification’’
involves prepending an encoding ofT2 to that input.! The
analogous concept for a physical computer is strong pred
ability; one physical computer can ‘‘emulate’’ another~not
distinguishable, in general! computer if it can strongly pre
dict that other one. Intuitively, the two components ofT1’s
emulatingT2, involving T2’s input and its computational be
havior, respectively, correspond to the two components
the requirement concerningx1 values that occur in the defi
nition of strong predictability. The requirement that thex1

value forces the answer ofy1 to equal that of any intelligi-
bility function of C2 is analogous to encoding~the computa-
tional behavior of! the TM T2 in a string provided to the
emulating TM,T1. Requiring as well that the valuex1 en-
sures thatX2(û)5x2 is analogous to also including an ‘‘ap
propriately modified’’ version ofT2’s input in the string pro-
vided toT1. ~Note that any mapping takingx2P$x2% to anx1

that in turn induces that startingx2 is invertible, by construc-
tion.! This motivates the following definition of the analog
a universal TM.

Definition 9. A universalphysical computer for a set o
physical computers is a member of that set that can stro
predict all other members of that set.

Note that rather than reproduce the output of a comput
is strongly predicting, a universal physical computer p
duces the value of an intelligibility function applied to th
output. This allows the computers in our set to have differ
output spaces from the universal physical computer. Ho
ever, it contrasts with the situation with conventional TM
being a generalization of such TM’s.

E. Prediction complexity

In computer science theory, given a universal TMT, the
algorithmic complexity of an output strings is defined as the
length of the smallest input strings8 that when input toT
producess as output. To construct our physical computati
analog of this, we need to define the ‘‘length’’ of an inp
region of a physical computer. To do this, first, given a
computerC and partitionp of Û, define a(weak) prediction
input setas a minimal subset ofC’s x values needed forC to
weakly induce all intelligibility functions ofp. ~The maxi-
mal such set is all of$x% of course, assumingC.p.!
C21(p) is defined as the set of all such prediction input se
Intuitively, the prediction set ofC for p/C8 is a minimal
subset of$x% that is needed byC for p/C8 to be predictable
to C.

Next, to define the physical computation analog of t
length of a string, given a computerC, define thelengthof a
subsetJ#$x% as the negative logarithm of the volume of a
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ûPÛ such thatX(û)PJ. We write this asl ~J!. Then if
C.p @so C21(p) is nonempty#, the prediction complexity
of p for C is the minimal such length over the setC21(p).
We write that complexity asC(puC). ~Note that the predic-
tion complexity is defined in terms of weak predictabili
rather than strong; strong predictability will arise in o
bounds on it.!

We are primarily interested in prediction complexities
binary partitions, in particular of the binary partitions in
duced by the separate single elements of multielement p
tions. @The binary partition induced by some particular e
ment pPp8 is just the binary-valued function ofû of
whether or notp8(û)5p.# To see what our definitions mea

for such a partition, say you are given some sets,Û ~i.e.,

you are given a binary partition ofÛ!. Suppose further tha
you wish to know whether the universe is ins, and you have
some computerC to use to address this issue~i.e., to evaluate

all four intelligibility functions of the partition (s,Û\s).
Then loosely speaking, the prediction complexity ofs with
respect toC is the minimal amount of Shannon informatio
that must be imposed inC’s inputs in order to get a minima
set of such inputs that ensure thatC’s output correctly ad-
dresses that issue. In particular, ifs corresponds to a poten
tial future state of some systemSexternal toC, thenC(suC)
is a measure of how difficult it is forC to predict that future
state ofS.5 Loosely speaking, the more sensitively that futu
state depends on current conditions, the more complex i

In many situations it will be most natural to choose t
volume measure implicitly definingl ~•! to be uniform over
accessible phase space volume, so that the length ofJ is the
negative physical entropy of constrainingû to lie in J. But
that need not be the case. For example, we can instead d
the measure so that the volume of each element of the a
ciated$x% is a different positive real number. In this case, t
lengths of the elements of$x% provides us with an arbitrary
ordering over those elements.

The following example illustrates the connection betwe
lengths of regionsJ and lengths of strings in TM’s.

Example 3. In a conventional computer~see Example 1
above!, we can define a ‘‘partial string’’s ~sometimes called
a ‘‘file’’ ! taking up the beginning of an input section
memory as the set of all ‘‘complete strings’’ taking up th
entire input section whose beginning iss. We can then iden-
tify the input to the computer as such a partial string in
input section.~Typically, there would be a special fixed-siz
‘‘length of partial string’’ region even earlier, at the ver
beginning of the input section, telling the computer ho

5Especially for nonbinaryp, many other definitions of prediction
complexity besides this one can be motivated. For example,
could reasonably define the complexity ofp to be the sum of the
complexities of each binary partition induced by an element ofp,
i.e., one could define it asSpPpC($ûPp,û¹p%uC). Another vari-
ant, one that would differ from the one considered in the text e
for binary partitions, is minrPC21(p)@SxPrl (x)#. For reasons of
space, no such alternatives will be considered in this paper.
8-12
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COMPUTATIONAL CAPABILITIES OF PHYSICAL SYSTEMS PHYSICAL REVIEW E65 016128
much of the complete string to read to get that partial strin!
If we append certain bits tos to get a new longer input partia
string,s8, the set of complete strings consistent withs8 is a
proper subset of the set of complete strings consistent wis.
Assuming our volume measuredm is independent of the
contents of the ‘‘length of partial string’’ region, this mean
that l (s8)>l (s).

This is in accord with the usual definition of the length
a string used in Turing machine theory. Indeed, ifs8 contains
n more bits than doess, then there are 2n times as many
complete strings consistent withs as there are consistent wit
s8. Accordingly, if we take logarithms to have base
l (s8)5l (s)1n.

Say we want our computer to be able to predict whetheû
lies in some sets. ~To maintain the analogy with Turing
machines,s could delineate an ‘‘output partial string.’’ Thi
could be done for example by delineating a particular va
of a prediction, perhaps even one in some other compu!
In the usual way, this corresponds to having the binary p
tition $ûPs, û¹s% be weakly predictable to our compute
So the prediction complexity of that prediction is the leng
of the shortest region of our input space that will weak
induce that prediction.~Note that since we require that a
four intelligibility functions of s be induced, more than on
input ‘‘partial string’’ is required for that induction, in gen
eral.!

We now derive a bound on differences of the predict
complexity of a partition with respect to two different un
versal computers. First, givenC together with some othe
computerC8, we need to define astrong prediction input se
of C for the triple of~C8, a subsetJ8 of the input values of
C8, and a subsetf 8, of the intelligibility functions forC8!.
This is a minimal subset ofC’s input values needed to
strongly induce every pair~f 8P f 8, x8PJ8!. When there is
at least one such subset we will writeC21(C8,J8, f 8) for
the set of all such subsets.

The fact thatyp values~cf. the definition of the prediction
partition in the Appendix! specify the setA(yq) makes work-
ing with these definitions difficult. In particular, to rela
prediction complexity to properties of the associated univ
sal physical computer we must use a set of ‘‘identity’’ inte
ligibility functions defined as follows.

Definition 12. ~i! Given a spaceZ#B and a physical
computer C5(X,Y), $I Z

C% is the set of all question
independent intelligibility functions ofC whereA(I Z

C)5Z,
and where for allû such thatA„Yq(û)…5Z, I Z

C(û)5Ya(û).
We also will need the following definition.

~ii ! Given a spaceZ#B and a physical computerC
5(X,Y), ‘‘ C←(Z)’’ is defined as thosexP$x% such that
X(û)5x⇒A„Yq(û)…#Z.

So, for example, ifZ5B, a pair „x2P@C2#←(Z), I Z
2

P$I Z
2%… is an input toC2 and an intelligibility function of

C2’s output, respectively. That inputx2 induces an associate
output question,q2P$yq

2%, that takes on~both! B values as
01612
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one varies over theû input to it. Similarly, the intelligibility
function I Z

2 takes on~both! B values as one varies over th
inputs to it.

Using these definitions, we now bound how much mo
complex a partition can appear toC1 than toC2 if C1 can
strongly predictC2. Though somewhat forbidding in appea
ance, intuitively, the bound simply reflects the complex
cost of ‘‘encoding’’C2 in C1’s input.

Theorem 7. Given any partitionp and physical computers
C1 andC2 whereC1@C2.p, we have the following:

~i! C~puC1!2C~puC2!< ln@o~2p!#2 ln@3#

1max$Z#B,x2P@C2#←~Z!,I Z
2P$I Z

2%%l @~C1!21~C2,x2,I Z
2!#

2min$Z#B,x2P@C2#←~Z!%l @x2#.

Or alternatively, we have the following:

~ii ! C~puC1!2C~puC2!< ln@o~2p!#

1min$z#B,x2P@C2#←~Z!,I Z
2P$I Z

2%%l @~C1!21~C2,x2,I Z
2!#

2min$Z#B,x2P@C2#←~Z!%l @x2#.

As one variesp, in both bounds in Theorem 7 how th
bound depends onC1 andC2 does not change. In addition
those bounds are independent ofp for all p sharing the same
cardinality. So, in particular, they are independent of the p
cise choice of partitionp so long as it is a binary partition
like those discussed in Example 3. In addition, intuitive
speaking, the terml @(C1)21(C2,x2,I Z

2)# occurring in both
bounds is related to the cost of emulating the one comp
on the other. This illustrates how Theorem 7 is the physi
computation analog of the result in Turing machine theo
that the difference in algorithmic complexity of a fixed strin
with respect to two separate Turing machine is bounded
the complexity of ‘‘emulating’’ the one Turing machine o
the other, independent of the fixed string in question.

Consider the possibility that for the laws of physics in o
universe, there exist partitionsX(•) andY(•) that constitute
a universal physical computerC* for all other physical com-
puters that exist in our universe. Then by Theorem 6,
other computer is similarly universal. Therefore there exi
a unique prediction complexity measure that is applicable
all physical computers in our universe, namely complex
with respect toC* . ~This contrasts with the case of algorith
mic information complexity, where there is an arbitrarine
in the choice of the universal TM used.! If instead there is no
universal physical computer in our universe, then ev
physical computerC must fail at least once at~strongly!
predicting some other physical computer.~Note that unlike
the case with weak predictability considered in Theorem
here we are not requiring that the universe be capable
having two distinguishable versions ofC.! This establishes
the following.
8-13
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DAVID H. WOLPERT PHYSICAL REVIEW E 65 016128
Theorem 8. Either there cannot be a computer th
strongly predicts all others that exist in our universe, or th
is a unique universally applicable complexity measure in
universe.

Similar conclusions hold if one restricts attention to a
of ~physically localized! conventional physical computer
~cf. Example 1!, where the light cones in the set are arrang
to allow the requisite information to reach the putative u
versal physical computer. See also the discussion of real
below.

IV. DISCUSSION

A. In what sense might reality ‘‘be’’ a computer?

None of the analysis in this paper requires that the p
sible states of the universe all be characterizable by a si
set of often-repeated very regular patterns encapsulate
some concise ‘‘physical laws.’’ The results still hold if eac
ûPÛ is just an arbitrary temporally indexed collection
events, with little to no discernible regularity relating tho
events. Broadening the interpretation further, whereas
deterministic universeu(t) uniquely sets allu(t8Þt), noth-
ing in our analysis relies on having that or any other kind
structure apply to eachû. Determinism itself is not needed
In fact, Û can be any kind of set whatsoever, even one wh
individual elements cannot reasonably be viewed as ‘‘tim
indexed collections of events,’’ regular or otherwise, or ev
one whose elements are not vectors, and our results
hold.

As mentioned in the Introduction, several authors ha
speculated that the entire universe and its physical laws
not some underlying structuregovernedby the conclusions
of a computer, but rather in some senseare a computer,
without any extraneous ‘‘underlying structure.’’ In light o
the breadth of the possibleÛ to which this paper’s analysi
applies, it is interesting to consider this issue when ‘‘co
puter’’ is interpreted to mean a physical computer. This u
of the mathematics of physical computation implicitly diffe
from the analysis up to now in whichû is a time-ordered
collection of events that contains a computer, embodied
some subset of its degrees of freedom. In contrast, hereû can
be completely arbitrary, and our partitions are allowed
involve all of the degrees of freedom ofû, not just some
subset of them. More importantly, while we still identify
particular instantiation of the laws of the universe with aû,
we do not identify what are intuitively viewed as the ‘‘phys
cal properties’’ of that instantiation directly with thatû, per
se. Rather we collectively identify all of those physic
properties—the totality of what is observable to humans c
cerning the universe—as the triple of~a computational an-
swer, to a particular~high-dimensional! question, in response
to a particular input!. The precise such triple is the one that
induced by thatû in concert with theX(•) andY(•) of some
physical computer. So here a particularûPÛ, by itself, has
no ‘‘physical meaning’’ whatsoever; it is the input-questio
answer triple that it induces, viaX(•) and Y(•), that pro-
vides all such meaning. Without that associated triple,û is
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just a point in a set, with no ancillary structure that cou
imbue it with meaning.

This identification of all physically meaningful propertie
of the universeû with the single associated input-questio
answer triple of a computer has some quite reasonable q
ties. For example, the value of the input gives a restriction
û. Intuitively this restriction is akin to a specification of th
physical boundary conditions under which the answer to
question of the universe is calculated. Note that that in
value not only fixes the universe’s answer though, but a
the very question being answered. So for major enou
changes to the input, in general there has to be a chang
that question being answered by the universe. This too
reasonable; intuitively, the original question is no long
meaningful given a large enough change toû.

Under this identification, the full mapping from arbitrar
inputs to the associated question/answer pairs provides
possible pairs of boundary conditions and associated ph
cal properties of the universe’s entire world line. In oth
words, that mapping—the computerC—constitutes the laws
of the universe. So under this identification we do not ne
elaborate considerations of grammars, formulations of lo
the foundations of mathematical reasoning, etc. to exp
the laws of the universe. Indeed, since we express the l

via a structure itself defined in terms ofÛ ~namelyC!, the

statesÛ and the laws governing them form a self-contain
unit.

To formalize this, we say that a pair (Û,C) is a reality.
One reality is acopyof another if their computers are copie
of each other. If two realities are copies, then their la
providing computers have identical relationships betwe
their inputs, the questions they associate with those inp
and the answers they provide to those questions. Acc
ingly, we identify a particular set of ‘‘laws of the universe
with an equivalence class of realities that are copies of
another, even if the spacesÛ of those realities differ.~See the
definition of ‘‘copy’’ in the Appendix.!

Say we are given a reality (Û,C). We can calculate for
what sets$Ci% of ~perhaps nondistinguishable! computers
defined overÛ the joint output partitionY1323¯ is predict-
able to C. Label that set of setsx. C’s answers give the
values of~associated intelligibility functions of! the outputs
of the members of any one of those$Ci%Px taken all at
once. Next, given someûPÛ, there is some subsetx(û),x
of $Ci% that are weakly induced byC’s associated input,
X(û). These, intuitively, are the$Ci% that are both predict-
able toC and are actually predicted byC for the û at hand. In
a certain sense, ifC is the ‘‘laws’’ of the reality, then having
Y1323¯ for a particular$Ci%Px be predictable toC is a
minimal condition for saying that the computers in$Ci% are
‘‘allowed by’’ or ‘‘consistent with’’ ( Û,C). HavingX(û) in-
duce that$Ci% for the û at hand is then a minimal conditio
for saying that the$Ci% are ‘‘real,’’ and ‘‘exist’’ in that û ~cf.
Theorem 8!. @It is interesting to speculate on the similari
between having multiple sets$Ci%Px(û) and the many
worlds interpretation of quantum mechanics.#
8-14
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Note that by definition of predictability, whether som
$Ci% ‘‘exists’’ is a function of whetherC can correctly give
$Ci% ’ s answersfor û other than the single one at hand. This
reliance on counterfactualû to ascribe existence to a$Ci%
reflects the fact that a singleû, by itself, contains no infor-
mation. Even ifû is a collection of high-dimensional rea
numbers~e.g., a collection of phase space positions!, it has
no meaning except in comparison to other such collectio

As a particular example of all this, we can have the e
ments of$Ci% be the entire sequence of predictions and
observations that constitute the mind of some particular
entist. Doing so, we see that a reality induces a set of sc
tists, each given by a different$Ci%. As another example, th
human endeavour comprising the field of physics constitu
a computer, with its input and output partitions delineated
states of the mind~s! of one or more physicists. The goal o
the field is to have the computer comprised of those t
partitions be computationally equivalent to~i.e., a copy of!
that of the embedding reality. The analysis of this paper p
vides some results concerning the possible relationships
tween the field of physics and those laws governing our e
bedding reality. For example, by Theorem 2, if we presu
that the minds of physicists are predictable to the laws of
universe, then those laws are not predictable to physicis

In addition to results concerning human endeavours,
analysis of this paper also provides results concerning se
mathematical laws governing universes. For example, fo
nite o(Û), it is often reasonable to have onex value for each
û, and similarly oney value for eachû ~that is the maximum

possible number of bothx’s and y’s!. Since there are 2o(Û)

binary-valued questions concerningÛ, this means the~usu-
ally vast! majority of questions are not in$yq%. So the ‘‘laws
of the universe’’ cannot pose most questions concerning
universe~cf. Theorem 1!. Furthermore, by Theorem 3, w
know that there are questionsq ~potentially not in$yq%! for
which there is nox value that can ensure thatC’s answer
correctly givesq(û). There are questions concerning the u
verse that we can never force the laws of the universe
answer correctly.

These results are particularly suggestive if we recall t
observation is a form of physical computation. Inability
pose all questions therefore implies a ‘‘coarse graining’’ o
the set of possible observations. It is tempting to try to rel
this to the quantum-mechanical uncertainty principle. N
that this physical computation ‘‘uncertainty principle’’ is di
ferent from the Theorem 2–based one discussed in the
Note also that whereas a particularû indices a unique an
swer, a particularx value andyq need not. This is suggestiv
of the indeterminacy of observation in quantum mechanic
knowing the boundary conditions of the universe and
observational question being posed to it need not uniqu
fix the associated answer.~See also the discussion of prob
bilistic partitions just before Lemma 1 in the Appendix.!

There are a number of stronger variants of all of this t
are worth investigating. In particular, one could add oth
conditions to the definition of whether$Ci% ‘‘exists.’’ An
example would be to incorporate the notion ofC strongly
inducing intelligibility functions of the$Ci%. Among other
01612
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things, this would allow us to define the complexity, to t
computer constituting the very laws of the universe, of a
swering a particular question. Another variant would be
exclude degenerate prediction, as discussed in the Appe
just before Definition 4.

Another example arises in response to the argument
rather than conveying physical meaning, the partitionsX and
Y are ultimately just arbitrary ‘‘interpretations’’ ofû, with no
further physical significance. According to this argume
any other interpretation, any other computer defined over
set of possibleû, can be viewed as just as legitimate. Wh
~as in previous sections of this paper! an electronic worksta-
tion constitutesû, this arbitrariness is not a problem. It
reasonable to say that the user of the workstation prov
the interpretation ofû; it is ~s!he who ultimately deems wha
the inputs and outputs to that workstation ‘‘mean.’’ A diffe
ent user of the exact same workstation undergoing the e
same dynamics is free to interpret that workstations’s inp
and outputs differently, and thereby constitute a differe
computerC. One might want less freedom of interpretatio
though, if rather than a workstation embedded in a unive
and accompanied by an interpreting user in that universe,
computer under consideration is supposed to be the v
laws of that universe themselves. This issue can be espec
nettlesome when we want to view those laws as uniq
somehow, independent of any interpreting ‘‘user.’’

This objection is ultimately philosophical, amounting to
semantic disagreement over how to define whether two
alities are ‘‘the same,’’ i.e., of how to define whether th
have the same ‘‘laws of the universe.’’ The view expound
above is in favor of a ‘‘weak’’ definition, and simply say
that a reality’s laws arenot embodied inû, but rather inC.
An alternative ‘‘strong’’ definition, overcoming the objec
tions raised above, adds conditions to the weak definit
These conditions inextricably coupleû and C, via the rela-
tionship between the question-answer pairs inC and the as-
sociated elements inÛ, and define two realities to ‘‘be the
same’’ if they share that property. Formally, we say th
(Û,C) is computationally equivalentto a different reality
(Û8,C8) if two conditions hold. First, the two realities mus
be copies of each other, so that their computers share
same set-valued function from inputsx to outputs (yq ,ya)
~as in the weak definition!. Second, the two computers mu
share the same set-valued function from inputs toû’s re-
sponse to the associated question, i.e., the s
function from the value ofX(û) to the value of a
5@Yq(û)#(û).6 ~Note that use of this stronger definition i
no way negates the properties involving setsx expounded at
the beginning of this section.!

6Note that there is a lot of structure not captured in this definiti
As an example, two realities can be computationally equival
even if they differ in their functions mappingX(û)
→@Yq(û)#„X21(x1)…, wherex1 is the first element of$x% „so that
for neither computer doesX21(x1) vary as theû argument to
@Yq(•)# is varied…. Such a difference between the two realities
akin to a difference in their responses to counterfactual questio
8-15



e
om
st
e
s

ar
nl
t
a
s
n
re

e

g
p
s
iv
a

t
sk
s
. I
a
ny

tu
ic
ru
w
ls
in

lik
e
re
ti

t
s
u

,
-
ot
ot
s
a
si
o

ut

m
el

ms
n-

put-
is
m
up-
nd-
nd

f
ap-
ot

al
-
ex-

In-
ys-

.
ith
ust
one-

be
h

, so
per
f a
e
le?

lity
st
at
ree
y

eak

e
olu-
is
m

are
he
the
ns,
ys-
ht

ty

o
t
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A related way of responding to the objection is to consid
realities that do not contradict themselves, i.e., whose c
puters are infallible~see the discussion in the Appendix ju
before Corollary 1!. Requiring that a physical computer b
infallible if we are to identify it as a universe certainly seem
reasonable. Moreover, if the computers in two realities
both infallible, then they are copies of each other if and o
if they are computationally equivalent. So if we restrict a
tention to infallible computers, the issue of computation
equivalence between realities is reduced to the original is
of whether the realities are copies, and there is no differe
between the weak and strong definitions of whether two
alities are ‘‘the same.’’ In addition, for infallibleC, if C is
also stable~see the Appendix!, then the issue of whetherC
weakly predicts someC8 simplifies to whetherC8 is intelli-
gible to C. Note also that for the computers in infallibl
realities, we can simplify the definition ofY to be just a
mapping fromû to questions~the associated answers bein
set automatically!. For all these reasons, when trying to ca
ture the human concept of what it means for two universe
‘‘be the same,’’ it seems reasonable to concentrate on equ
lence classes of infallible realities that are copies of one
other.

B. Relation of Theorem 2 to previous work

Any results concerning physical computation should, a
minimum, apply to the computer lying on a scientist’s de
However, that computer is governed by the mathematic
deterministic finite automata, not that of Turing machines
particular, the impossibility results concerning Turing m
chines rely on infinite structures that do not exist in a
computer on a scientist’s desk.

On the other hand, when one carefully analyzes ac
computers that perform calculations concerning the phys
world, as in this paper, one uncovers a mathematical st
ture governing those computers that is replete with its o
impossibility results. While much of that structure paralle
Turing machine theory, much of it has no direct analog
that theory. For example, it has no need for structures
tapes, moveable heads, internal states, read and/or writ
pabilities, and the like, none of which have any obvious
lation to the laws of quantum mechanics and general rela
ity.

Nonetheless, there are a number of previous results in
literature that can be viewed as Turing machine analog
Theorem 2. Many authors have shown how to construct. T
ing machines out of physical systems~see, for example
@11,25#, and references therein!. By the usual uncomputabil
ity results, there are properties of such systems that cann
calculated on a physical Turing machine within a fixed all
ment of time~assuming each step in the calculation take
fixed noninfinitesimal time!. In addition, there have been
number of results explicitly showing how to construct phy
cal systems whose future state is noncomputable, with
going through the intermediate step of establishing comp
tional universality@14,26#.

There are several important respects in which Theore
extends this previous work. All of these previous results r
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on infinities of some sort in physically unrealizable syste
~e.g., in@26# an infinite number of steps are needed to co
struct the physical system whose future state is not com
able!. In addition, they all assume one’s computing device
no more powerful than a Turing machine. Also none of the
are motivated by scenarios where the computation is s
posed to be a prediction of the future. Nor are they exte
able to allow arbitrary coupling between the computer a
the external universe, as~for example! in the processes o
observation and control. There are other limitations that
ply to many of these previous results individually, while n
applying to each and every one of them. For example, in@26#
it is crucial that we are computing an infinite precision re
number rather than a ‘‘finite precision’’ quantity like an inte
ger. As another example, many of these previous results
plicitly require chaotic dynamics~e.g., @8#!. None of these
limitations apply to the analogous result of this paper.
deed, the results of this paper even hold if the laws of ph
ics are changed.

C. Future work

Future work includes investigating the following issues
~i! How are the results modified if one is concerned w

the probabilities of erroneous prediction rather than j
worst-case analysis of whether there can possibly be err
ous prediction?

~ii ! How must the definitions and associated results
modified for analog computers~so that one is concerned wit
amounts of error rather than whether there is an error!? Even
if one is predicting the future state of a stochastic system
long as that prediction is falsifiable the analysis in this pa
applies.~See the discussion just before the definition o
physical computer.! However, how should the analysis b
changed if what one is trying to predict is a random variab
Alternatively, what if~as in the classical real world! û has a
definite value, but the output of the computer is a probabi
distribution? A preliminary analysis of this is presented ju
before Lemma 1 in the Appendix. There it is proven th
there cannot be two computers both of which have a ‘‘deg
of weak predictability’’~a measure quantifying the accurac
of a probability distribution output! equal to 1. The value of
the strict upper bound on such a pair of degrees of w
predictability is currently unknown.

~iii ! Since by adopting the many-world interpretation w
can cast quantum mechanics as purely deterministic ev
tion in Hilbert space, the presumption of determinism in th
paper does not a priori invalidate its applicability to quantu
systems. However, it is still worth asking whether there
any modifications to the definitions that would facilitate t
analysis for quantum systems, especially if we adopt
Copenhagen interpretation. If there are such modificatio
then how are the ensuing results different for quantum s
tems?~As an example of such a modification, one mig
want to allow sufficient time betweenT andt in Example 1
to not run into difficulties due to the Heisenberg uncertain
principle.!

~iv! Find the exact point of failure—which according t
theorems~1! and ~2! must exist—of the intuitive argumen
8-16
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‘‘If the computer is simply a sufficiently large and fa
Hamiltonian evolution approximator, then it can emulate a
finite classical nonchaotic system.’’

~v! As mentioned just above, there is a large body of wo
showing how to embed TM’s in physical systems. One to
for future work is following an analogous program in th
domain of physical computation, for example by investig
ing what physical systems support copies of any elemen
various sets of physical computers.

~vi! Exploiting the generality of our definitions, it may b
possible to apply the analysis of this paper to the foundati
of mathematics. As an example, choose a setÛ so that each
ûPÛ is a ‘‘book.’’ Each book consists of a collection o
mathematical propositions, for example~though not neces
sarily! expressed as strings over some fixed alphabet.
precise choice ofÛ can embody any desired restrictions
the set of possible books. The pair of a question and ans
then is a choice of a subset of books inÛ. For example, such
a pair could be a subset of books all of which contain pro
sitions that all ‘‘make the same claim’’~i.e., give the same
answer! concerning some formal mathematical hypothe
~i.e., concerning a question at hand!. Next, a choice of an
input to a computer is a restriction of attention to a cert
set of books. So as an example it could be a restriction
set of books all of which adhere to a certain set of axio
~that set constitutes the premise that is input to the co
puter!. Finally, the output function is a mapping from a boo
to a question and answer. For example,Û may bea priori
restricted to books that contain declarations of the s
‘‘given these axioms, the following is true.’’ In that case, th
output function is a way of choosing a single such decla
tion from each book.~By allowing only one question pe
book, the output function manages to sidestep the issu
ensuring no contradiction arises between its answers to v
ous questions for the same underlying book.!

~vii ! What other restrictions are there on the predictabi
relations within distinguishable sets of physical comput
beyond that they form unions of DAG’s? In other word
which unions of DAG’s can be manifested as the predicta
ity relations within a distinguishable set? How does this
swer change depending on whether we are considering
of fully input-distinguishable computers or sets of pairwis
distinguishable computers? For which computers are th
finite, countably infinite, or uncountably infinite numbers
levels below them in the DAG to which it belongs? Mig
such levels be gainfully compared to the conventional co
puter science theory issue of position in the Chomsky h
archy?@See also~xvi! below.#

~viii ! One might try to characterize the unpredictabilit
of-the-future result of Theorem 2 as the physical compu
tion analog of the following issue in Turing machine theo
Can one construct a Turing machineM that can take as inpu
A, an encoding of a Turing machine and its tape, and for
such A compute what stateA’s Turing machine will be in
after n steps, and perform this computation in fewer thann
steps? This characterization suggests investigating the fo
parallels~if any! between the results of these papers and
‘‘speed-up’’ theorems of computer science.
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~ix! More speculatively, the close formal connection b
tween the results of this paper and those of computer scie
theory suggest that it may be possible to find physical a
logs of most of the other results of computer science the
and thereby construct a full-blown ‘‘physical computer s
ence theory.’’ In particular, it may be possible to build
hierarchy of physical computing power, in analogy to t
Chomsky hierarchy. In this way we could translate compu
science theory into physics, and thereby render it physic
meaningful.

We might be able to do at least some of this even with
relying on the DAG relationship among the physical comp
ers in a particular set. As an example, we could conside
system that can correctly predict the future state of the u
verse from any current state of the universe, before that
ture state occurs. The behavior of such a system is perfe
well defined, since the laws of physics are fully determinis
~for quantum mechanics this statement implicitly presum
that one views those laws as regarding the evolution of
wave function rather than of observables determined by n
unitary transformations of that wave function!. Nonetheless,
by the central unpredictability result of Theorem 2, we kno
that such a system lies too high in the hierarchy to exis
more than one copy in our physical universe.

With such a system required to exist in more than o
copy, and then identified with an oracle of computer scien
theory, we have the definition of a ‘‘physical’’ oracle. Can w
construct further analogs with computer science theory
leveraging that definition of a physical oracle? In oth
words, can we take the relationships between~computer sci-
ence! oracles, Turing machines, and the other members
the ~computer science! Chomsky hierarchy, and use thos
relationships together with our~physical! oracle and physica
computers to gainfully define other members of a~physical!
Chomsky hierarchy?

~x! Can we then go further and define physical analogs
concepts like polynomial versus nondeterministic polyn
mial complexity, and the like? Might the halting probabilit
constantV of algorithmic information theory have an analo
in physical computation theory?

As another example of possible links between conv
tional computer science theory and that of physical comp
ers, is there a physical computer analog of Berry’s parad
Weakly predicting a partition is the physical computati
analog of ‘‘generating a symbol sequence’’ in algorithm
information complexity. The core of Berry’s paradox is th
there are numbersk such that no Turing machine can gene
ate a sequence having algorithmic information complexitk
~with respect to some prespecified universal Turing mach
U!. So, for example, one closely related issue in physi
computation is to characterize the physical computersC1 and
the xPR such that there exists a computerC2 where C1

@C2 and where for all partitionsp, C2 weakly predicts
whetherC(puC1).x ~i.e., such that there existsx2P$x2%
such thatX2(û)5x2⇒Yp

2(û)5„B, whether or notC(puC1)
.x)….

~xi! Concerns of computer science theory, and in parti
lar of the theory of Turing machines, have recently be
incorporated into a good deal of work on the foundations
8-17
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DAVID H. WOLPERT PHYSICAL REVIEW E 65 016128
physics~e.g.,@36,37#!. Future work involves replacing phys
cal computers for Turing machines in this work, along w
replacing notions like prediction complexity for notions lik
algorithmic complexity.

~xii ! More generally, there have been many candida
proposed for how one should measure ‘‘the complexity’’ o
physical system, e.g., thermodynamic depth@21#, logical
depth@5#, and physical complexity@36,37#. Future work in-
volves elaborating the relation between these alternatives
prediction complexity. Particularly intriguing in this regard
logical depth, which is explicitly concerned with ‘‘how muc
mathematical work’’ is needed to perform a computatio
measured in number of computation steps. Prediction c
plexity is also concerned with such work, only measur
spatially in terms of how much initialization precision is r
quired to perform the computation.

~xiii ! Other future work involves investigating other po
sible definitions of complexity for physical computatio
Even sticking to analogs of algorithmic information com
plexity, these might extend significantly beyond the mod
cations to the definition of prediction complexity discuss
in the text. For example, one might try to define the ana
of a bit sequence’s ‘‘length’’ in terms of the number of el
ments in$yq% rather than in terms of a volume. As anoth
alternative one might take the~inverse! complexity of a com-
putational device to be the number of input-distinguisha
computers that can predict that device~all contained in some
prespecified input-distinguishable set, presumably!.

~xiv! There are at least several ways that the formal d
nition of a reality presented in Sec. IV A can be modifie
For example, one could consider realities that consist of
of multiple computers together with an underlying univer
rather than just a single such computer. This would bring
the multiple computer unpredictability results~e.g., Theorem
2! directly into play within the fundamental laws of physic
themselves.~A number of other topics related to realities th
are worth investigating are presented in Sec. IV A.!

~xvi! Originally we restricted attention to intelligibility
functions that are question-independent because other
no pair of computers could be mutually intelligible~Theorem
1!. However, it turned out that even with this restriction,
pair of computers can be mutually predictable~Theorem 2!.
Accordingly, in Secs. III and IV attention shifted to god com
puters, which can correctly predict any computer outside
themselves, but are not themselves predictable to such c
puters. Given this shift, though, Theorem 1 now does
provide a reason to require that our intelligibility function
be question-independent. Future work involves reanalyz
the issues addressed in Secs. III and IV for full questi
dependentintelligibility functions. Other future work in-
volves reanalyzing those issues for changes in which of
conditions~i!, ~ii !, and/or~iii ! discussed in the Appendix ar
used to define weak and/or strong predictability.
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APPENDIX: FORMAL DEFINITIONS AND PROOFS

This appendix presents the fully formal definitions a
proofs of the results discussed in the text. We start with
following definition.

Definition 1.
~i! A ~computation! partition is a pair, consisting of a

nonempty set of partition-element labels and a single-val
mapping fromÛ into that set. Unless stated otherwise, t
mapping is assumed to be surjective onto the set.

~ii ! Any question qPQ is a partition, whose set o
partition-element labels isA(q), with elementsaPA(q)
calledanswersto that question. We restrict attention toQ so
that there exists at least two elements inA(q) for at least one
qPQ.

Note that we make no assumptions concerning the fin
ness ofQ and/or any of the$A(q)PQ%. Unless indicated
otherwise~e.g., in the definition of questions!, any partition
is assumed to contain at least two elements. Note that
definition of a computer partition differs from that of a co
ventional set-theoretic partition in its inclusion of th
partition-element labels. Given these definitions, we can n
define physical computers.

Definition 2.
~i! In anoutput partition Y, the space of partition elemen

labels is a space of possible ‘‘outputs,’’$y%, consisting of all
pairs $yqPQ,yaPA(yq)%, for someQ and associatedA(•)
as defined in Definition~1!. Often, for convenience, we wil
write an output partitionY explicitly in the form (Q,Y),
whereY(•) is the output mapûPÛ→$yqPQ,yaPA(yq)%.
Also, we will find it useful to define an associated~predic-
tion! partition,Yp(•):û→„A(Yq(û)),Ya(û)….

~ii ! In an input partition X, the space of partition elemen
labels is a space of possible ‘‘inputs,’’$x%[A(X).

~iii ! A ~physical! computerconsists of the double of an
input partition and an output partition.

Since we are restricting attention to nonemptyQ ~cf. Defi-
nition 1!, $y% is nonempty. The surjectivity usually assume
of X(•) andY(•) ~cf. Definition 1! is a restriction on$x% and
$y%, respectively. In the case ofY it reflects the fact that we
want the computer to be able to provide any of the allow
answers to any question it can pose.~This property is per-
haps the most important reason why we do not define
output of a computer simply to be a single region ofÛ, but
rather to be a question-answer pair that delineates suc
region. See discussion of Definition 6 below.! More gener-
ally, for both inputs and outputs, for reasons of convenie
we do not want to allow a value ‘‘officially’’ to be in the
space of the computer’s potential inputs~outputs! if there is
no state of the computer that corresponds to that input~out-
put!. For example, if the computer is a digital workstatio
with a kilobyte of its RAM set aside as input, it makes n
sense to have the input space contain more than (28)1024
8-18
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values, the number of possible bit patterns in that RAM. F
an example of whenY(•) need not be surjective, see De
nition 7 below.

Example 1 continued. Restrict attention to computers~X,
Q, Y! where allqPQ concern the same momentT. Then you
get a different physical computer if you change any of
times 0,T, or t @implicitly setting X(•), all q(•)PQ, and
Y(•), respectively#. In this sense the electronic workstatio
on your desk is actually a set of many different compute
All those computers are~typically! copies of one another
however, in the formal sense defined below. This differe
with common vernacular is important to bear in mind
considering the results presented below.

We can now define a ‘‘copy’’ of a physical computer.

~iv! Given a computerC[$X,Q,Y(•)%, define theimpli-
cation in $y% of any valuexP$x% to be the set of ally
P$y% consistent withx, in that there existsûPÛ for which
both X(û)5x andY(û)5y.

~v! The computerC2[$X2,Q2,Y2(•)% is a copy of the
computerC1[$X1,Q1,Y1(•)% if and only if Q25Q1, $x2%
5$x1%[$x%, and the implication in$y2% of anyxP$x% is the
same as the implication in$y1% of that x. Note that Q2

5Q1 means that$y2%5$y1%.

As an example, any computer is a copy of itself. Mo
generally, if V is a bijection over Û, then
$X„V(•)…,Q,Y„V(•)…% is a copy of$X(•),Q,Y(•)%. An ob-
vious generalization of Definition 2~v! is to only require that
there be a reordering of the individualq2PQ2 and/or a bijec-
tive transformation of some of theA(q2PQ2) such thatQ2

5Q1.
Note thatX1(•) may differ from X2(•) and thatY1(•)

may differ fromY2(•) in the definition of a copy of a com
puter; the two computers are allowed to have different in
values for the sameû, and they are allowed to have differe
output values for the sameû. ~If this were not the case, th
two computers would be identical.! Similarly, they can have
different û for the same output values~and/or input value!.
Accordingly, a particular partition can be weakly predictab
to a computerC but not to a copy ofC. ~For example, this
can occur when that partition is related to the output sec
of C’s copy.!

It is possible to generalize Definition 2~v! so thatC1 and
C2 do not concern the sameÛ, so long asQ1 and Q2 are
both countable. The only place in our definition that the sh
ing of Û arises is in the requirement thatQ25Q1. To cir-
cumvent that requirement, given any countable set of pa
tions $p i%, defineP($p i%) as the union over allû of the
strings (p1(û),p2(û),...). @Since $p i% is countable, so is
each string.# This union is how the partitions collectivel
divide up Û. Now order both the elements ofQ1 @as
(q1

1,q1
2 . . . )] and theelements ofQ2. Then if we replace

the requirement thatQ25Q1 with the requirement tha
P(Q2)5P(Q1), and redefine output partitions so thatyq is
the index of a question rather than that question, we arriv
our desired generalization.
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If there is additional structure in the twoÛ at hand, one
can refine this generalization of the definition of a copy. F
example, if bothÛ are topological spaces that are home
morphically related, one can require that the transformat
implicit in establishing thatP(Q1)5P(Q2) respects that
homeomorphism.

Definition 3. Consider a physical computerC
[„Q,X(•),Y(•)… and a Û-partition p. A ~not necessarily
surjective! partition mappingÛ into B, f is an intelligibility
function ~for p! if

; û,û8PÛ,

p~ û!5p~ û8!⇒ f ~ û!5 f ~ û8!,

whereA( f ) is defined to be the image ofÛ underf. A setF
of such intelligibility functions is anintelligibility set for p.

If F is an intelligibility set forp andF#Q, we say thatp
is intelligible to C with respect toF. If the intelligibility set is
not specified, it is implicitly understood to be the set of
intelligibility functions for p. We say that two physical com
putersC1 and C2 are mutually intelligible @with respect to
the pair (F1,F2)# if and only if bothY2 is intelligible to C1

with respect toF2 andY1 is intelligible toC2 with respect to
F1.

Plugging in,p is intelligible to C if and only if for all
intelligibility functions f, there existsqP$yq% such thatq
5 f , i.e., such thatA(q) is the image ofÛ underf, and such
that for all ûPÛ, q(û)5 f (û). Formally, by the surjectivity
of Y(•), demanding intelligibility implies that there exist
û8PÛ such that for allûPÛ, @Yq(û8)#(û)5 f (û). Note that
sincep contains at least two elements, ifp is intelligible to
C, there existsyqP$yq% such thatA(yq)5B, a yq such that
A(yq)5$0%, and one such thatA(yq)5$1%. Usually we are
interested in the case wherep is an output partition of a
physical computer, as in mutual intelligibility.

In conventional computation as in Example 1,X(•) speci-
fies the questionqPQ we want to pose to the computer. I
such scenarios, mutual intelligibility restricts how muc
computation can be ‘‘hidden’’ inY2(•) and X1(•) @Y1(•)
andX2(•), respectively# by coupling them, so that subsets
the range ofY2(•) are, directly, elements in the range
X1(•), without any intervening computational processing

We are now in a position to formally define what it mea
for a computer to make a prediction. First consider the f
lowing three conditions relating a computerC, a partitionp,
and an intelligibility set forp,F.

~i! p is intelligible to C with respect toF, i.e., F#$yq%.
~ii ! ; f PF, ' xP$x% that weakly induces f, i.e., anx

such that

X~ û!5x

⇒

Yp~ û!5„A~ f !, f ~ û!….
8-19
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~iii ! ; f PF, if the set ofx values weakly inducingf is
nonempty, then there is at least one of thosex for which it is
further true thatX(û)5x⇒Yq(û)5 f .

Intuitively, condition~ii ! means that for all questionsq in
F, there is an input state such that ifC is initialized to that
input state,C’s answer to that questionq ~as evaluated att!
must be correct. If~ii ! and~iii ! both hold, then we can com
bine those conditions into the single statement that for af
PF there exists xP$x% such that X(û)5x⇒Y(û)
5„f , f (û)…, and~i! is superfluous. Intuitively, in such a situ
ation, for any question in the intelligibility set, there is a
ways an input that induces the computer to ask and~cor-
rectly! answer that question.

Some of the unpredictability results do not require that
three conditions hold. In particular, our central result, The
rem 2, relies on neither~i! nor ~iii !; in its strongest formula-
tion it only invokes condition~ii ! ~as the proof of it presente
below makes clear!. In contrast, existence proofs are stro
gest when we impose as many conditions as possible
addition, ~ii ! allows ‘‘degenerate prediction’’ forp’s with
more than two elements, in which'pPp such that allx
used to induce anf also inducep(û)5p. This cannot occur
if we modify ~ii ! to ‘‘ ; f PF, ; aPA( f ), ' xP$x%, . . .
and such that' û obeyingX(û)5x and f (û)5a. All of this
raises the issue of which of these conditions would m
usefully be incorporated into our definition of predictabilit
As a compromise, here the term ‘‘weak predictability’’
interpreted to mean only that conditions~i! and~ii ! necessar-
ily hold.

Definition 4. Consider a physical computerC, partitionp,
and intelligibility set forp,F. We say thatp is weakly pre-
dictableto C with respect toF if and only if F#$yq%, and;
f PF, ' xP$x% that weakly inducesf.

As a formal matter, note that in the definition of predic
able, even thoughf (•) is surjective ontoA( f ) ~cf. Definition
3!, it may be that for somex, the set of valuesf (û) takes on
when û is restricted so thatX(û)5x do not cover all of
A( f ). The reader should also bear in mind that by surjec
ity, ; xP$x%, ' ûPÛ such thatX(û)5x.

We next define the property that two computers’ inp
functions are independent.

Definition 5. Consider a set ofn physical computers$Ci

[„Qi ,Xi(•),Yi(•)…: i 51,...,n%. We say$Ci% is (input) distin-
guishableif and only if for all/a n-tuples (x1P$x1%,...,xn

P$xn%),'ûPÛ such that; i, Xi(û)5xi simultaneously.

We say that$Ci% is pairwise~input! distinguishable if any
pair of computers from$Ci% is distinguishable, and will
sometimes say that any two such computersC1 andC2 ‘‘are
distinguishable from each other.’’ We will also say that$Ci%
is a maximal ~pairwise! distinguishable set if there are n
physical computersC¹$Ci% such thatCø$Ci% is a ~pair-
wise! distinguishable set.

Our first result does not even concern the accuracy
prediction. It simply states that for any pair of physical co
puters there arealways binary-valued questions about th
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state of the universe that cannot even be posed to at leas
of those physical computers. In particular, this is true if t
second computer is a copy of the first one, or even if it is
same as the first one.~The result does not rely on input
distinguishability of the two computers—a property that o
viously does not describe the relationship between a c
puter and itself.! This impossibility holds no matter what th
cardinality of the set of questions that can be posed to
computers~i.e., no matter what the cardinality of$x% and/or
Q!. It is also true no matter how powerful the computers~and
in particular holds even if the computers are more powe
than a Turing machine!, whether the computers are analog
digital, whether the universe is classical or quantum m
chanical, whether or not the computers are quantum com
ers, and even whether the computers are subject to phy
constraints like the speed of light. In addition, the result do
not rely on chaotic dynamics in any manner. All that is r
quired is that the universe contain two~perhaps identical,
perhaps wildly different! physical computers.

Theorem 1. Consider any pair of physical compute
$Ci : i 51,2%. Either there exists finite intelligibility setF2 for
C2 such thatC2 is not intelligible toC1 with respect toF2,
and/or there exists finite intelligibility setF1 for C1 such that
C1 is not intelligible toC2 with respect toF1.

Proof. Hypothesize that the theorem is false. ThenC1 and
C2 are mutually intelligible for all finiteF1 andF2. Now the
set of all finiteF2 includes any and all intelligibility func-
tions for C2, i.e., any and all functions takingû to a bit
whose value is set by the valueY2(û). The set of those
functions can be bijectively mapped to the power set 2$y2%.
So F2#Q1⇒o(Q1)>o(2$y2%). However,o($y2%)>o(Q2),
since$y2% contains all possible specifications of aq2PQ2.
Thereforeo(Q1)>o(2Q2

). But it is always true thato(2A)
.o(A) for any set A, which means in particular tha
o(2Q2

).o(Q2). Accordingly, o(Q1).o(Q2). Similarly,
though,o(Q2).o(Q1). Thereforeo(Q1).o(Q1), which is
impossible. QED.

Ultimately, Theorem 1 holds due to our requiring that o
physical computer be capable of answering more than
question about the future state of the universe. To satisfy
requirementq cannot be prespecified.~In conventional com-
putation, it is specified in the computer’s input.! But pre-
cisely becauseq is not fixed, for the computer’s output ofa
to be meaningful it must be accompanied by the specifica
of q; the computer’s output must be a well-defined region
Û. It is this need to specifyq as well asa in the output,
ultimately, which means that one cannot have two phys
computers both capable of being asked arbitrary quest
concerning the output of the other.

Theorem 1 reflects the fact that while we do not want
haveC’s output partition ‘‘rigged ahead of time’’ in favor o
some single question, we also cannot require too much fl
ibility of our computer. It is necessary to balance these t
considerations before analyzing prediction of the future.
do this with the formal property of question independenc
8-20
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Recall that for anyf that is an intelligibility function of
~the output partition of! some computerC, ;û, û8PÛ,
Y(û)5Y(û8) implies thatf (û)5 f (û8). So for such anf, the
joint condition@Yq(û)5Yq(û8)#∧@Ya(û)5Ya(û8)# implies
that f (û)5 f (û8). In question-independence we considerf’s
that obey weaker conditions than this.

Definition 6. An intelligibility function f for an output
partition Y(•) is question independentif and only if for all
û,û8PÛ

Yp~ û!5Yp~ û8!

⇒

f ~ û!5 f ~ û8!.

An intelligibility set as a whole is question independent if
its elements are.

We write C1.C2 ~or equivalentlyC2,C1! and say sim-
ply thatC2 is ~weakly! predictableto C1 ~or equivalently that
C1 can predict C2! if Yp

2 is weakly predictable toC1 for all
question-independent finite intelligibility sets forC2. Simi-
larly, from now on we will say thatC2 is intelligible to C1

without specification of an intelligibility set ifYp
2 is intelli-

gible to C1 with respect to all question-independent fin
intelligibility sets for C2.

Intuitively, f is question-independent if its value does n
vary with q among any set ofq all of which share the sam
A(q). As an example, say our physical computer is a c
ventional digital workstation. Let a certain section of t
workstation’s RAM be designated the ‘‘output section’’
that workstation. That output section is further divided into
‘‘question subsection’’ designating~i.e., ‘‘containing’’! a q,
and an ‘‘answer subsection’’ designating ana. Say that for
all q that can be designated by the question subsectionA(q)
is a single bit, i.e., we are only interested in binary-valu
questions. Then for a question-independentf, the value off
can only depend on whether the answer subsection conta
0 or a 1. It cannot vary with the contents of the quest
subsection. In terms of the first of the motivations we int
duced for requiring intelligibility, requiring question
independent intelligibility means we only require each co
puter’sanswerto be readily intelligible to the other one. W
are willing to forego having the question that each compu
thinks it is answering also be readily intelligible to the oth
one.

As a formal example of question-independent intelligib
ity, say our computer has questionsq for which A(q)5B,
questionsq for which A(q)5$0%, and q for which A(q)
5$1%, but no others. Then there are four distinct subsets
Û, which mutually coverÛ, defined by the four equation
Yp(û)5(B,1), Yp(û)5(B,0), Yp(û)5($1%,1), and Yp(û)
5($0%,0). @The full partition Y(•) is a refinement of this
four-way partition, whereas this four-way partition need n
have any relation with the partitions making up eachq in Q.#
So a question-independent intelligibility function of o
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computer is anyB-valued function of which of these fou
subsets a particularû falls into.

Theorem 1 does not hold if we restrict attention
question-independent intelligibility sets. As an example, b
of our computers could have their output answer subsect
be a single bit, and both could have theirQ contain all four
Boolean questions about the state of the other comput
output answer bit.~Those are the following functions from

ûPÛ→B: Is u such that the other computer’s output bit
1?, 0?, 1 and/or 0? Neither 1 nor 0?! So theQ of both com-
puters contains all possible question-independent intelligi
ity sets for the other computer.

So Definition 6 allows us to circumvent Theorem 1. As
alternative solution, we could define aquestion-free com-
puter as a pair of an input partition and an output partiti
where each output valuey only consists ofA(yq) and a
@rather thanyq , A(yq), anda#. Working with such comput-
ers would have the benefit of simplifying the analysis. Int
ligibility in the sense originally defined, applied to
question-free computer, is exactly equivalent to apply
question-independent intelligibility to a full~question-
dependent! computer. Moreover, many of the results of th
paper still hold for question-free computers.

The problem with this alternative approach is that the t
partitions X(•) and Yp(•), by themselves, do not reall
specify a ‘‘computer’’ in any sense. They do not specify
means of associating answers with questions.~See also the
end of Sec. IV A.! To address this without introducingYq ,
one might add a mapping from questions to inputs to
definition of a computer, i.e., specify the question in the
put. However, once one does this it is not clear that this n
definition of a computer is any ‘‘simpler’’ than our origina
one. This approach is not pursued any further in this pap

In general, we cannot have thex value of our computerC
always uniquely fix the associatedya @i.e., cannot have the
case that;x, 'ya such thatX(û)5x⇒Ya(û)5ya#. If it did,
thenC could not predict most nontrivial computers that a
distinguishable fromC. For example, say that for a differen
computerC2, ; yq

2P$yq
2%, A(yq

2)5$x2%, and thatYa
2(û)

5X2(û) ; û. So C2’s output simply equals its input. The
sincewhateverthe choice ofx all x2 values are allowed~by
distinguishability!, it follows that whatever the choice ofx,
all ya

2 values are allowed. So appropriate choice ofx cannot
make the valueya track ~an intelligibility function of! ya

2 if
that choice ofx forces a unique valueya .

This is quite reasonable. IfC1 is to predictC2 correctly,
the information of whatC2 is calculating must somehow b
conveyed intoC1. Due to input distinguishability, this can
only happen byC1’s implicitly gaining access to what ques
tion C2 is answering some time after input is set~rather than
by havingx1 reflectx2!. Accordingly, for a fixedx1, C1 must
be able to generate different predictions, depending on
results of that ‘‘observing.’’ Hence,x1 cannot fix the value
ya

1. ~On the other hand, it is not so unreasonable to dem
that the value ofx1 specify the valueyq

1, i.e., demand that it
uniquely fixes what questionC1 is answering. See Corollary
1 below.!
8-21
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The following example establishes that there are pairs
input-distinguishable physical computers$C1,C2% in which
C2 is predictable toC1, and in which thequestioncompo-
nent of y1 is uniquely fixed byx1 but not the answer com
ponent.

Example 2. Q2 consists of a single question, one whic
is a binary partition ofÛ so thatA„yq

2(û)…5B always. Since

Y2(•) is surjective, the image ofÛ underYa
2(•) is all of B.

Q1 has four elements given by the four logical functions
the bit Ya

2(û). ~Note these are the four intelligibility func
tions for C2.! Let X1(•)5Yq

1(•), so that$x1% contains four
elements corresponding to those four possible questions
cerningya

2. Next, letYa
1(û)5@Yq

1(û)#(û) ; ûPÛ. Then for
any of the four intelligibility functions forC2, q, ' x1

P$x1% such that X1(û)5x1⇒@A„Yq
1(û)…5A(q)#∧@Ya

1(û)
5q(û)#; simply choosex15q, so thatX1(û)5x1⇒Yq

1(û)
5q. Finally, to ensure distinguishability, if there are multip
x2 values, let each one occur for at least oneû in each of the
subregions ofÛ given by the partitionX1(•).

Due to question-independence, we do not need to spe
Yq

2(•). If we like, we could set it so thatyq
2 is uniquely fixed

by the value ofx2, just as is the case forC1.
To ensure surjectivity ofY1(•), we could haveX1(•)

subdivide each of the two sets~one set for each valueya
2!

$ûPÛ: Ya
2(û)5ya

2% into four nonempty subregions, one fo
eachx1 value. So„X1(û),Ya

2(û)… are two-dimensional coor
dinates of a set of disjoint regions that form a rectangu
array coveringÛ. This means thatû→„X1(û),Ya

2(û)… is sur-
jective onto$x1%3$ya

2%, so that for anyya
1 and intelligibility

function of C2, q, there is always a value ofx1 that both
induces the correct prediction for that functionq and is con-
sistent with thatya

2.

The following variant of Example 2 establishes that w
could have yet another computerC3 that predictsC2 but that
is also distinguishable fromC1.

Example 28. Have Q35Q1, $x3%5$x1%, Yq
3(•)5X3(•),

Ya
3(û)5@Yq

3(û)#(û) ; ûPÛ, and haveX3(•) subdivide
X1(•) so that all four values ofx3 can occur with each value
of x1. In general, as we vary over allûPÛ and therefore
over all (x1,x3) pairs, the pair of the intelligibility function
that C1 is predicting will separately vary from those thatC3

is predicting, in such a way that all 24 pairs of intelligibility
functions forC2 are answered correctly for someûPÛ.

In addition, we can have a computerC4, distinguishable
from both C1 and C2, where C4.C1, so that C4.C1

.C2. We can do this either withC4.C2 or not, as the
following variant of Example 2 demonstrates.

Example 29. Have Yq
4(•)5X4(•), Ya

4(û)

5@Yq
4(û)#(û) ; ûPÛ, and$x4%5$yq

4% equals the set of al
24 question-independent intelligibility functions forC1.
@There are four possible yp

1:
$($0%,0),($1%,1),(B,0),(B,1)%.# Ensure surjectivity ofY4

(•) by having each region of constantYq
4(û) overlap each
01612
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region of constantYp
1(û). This establishes thatC4.C1. Dis-

tinguishability would then hold ifX4(•) subdividesX1(•) so
that all 16 values ofx4 can occur with each value ofx1.

In this setup,C2 may or may not be predictable toC4. To
see how it may not be, consider the case where$x2% is a
single element~so distinguishability withC2 is never an is-
sue!. HaveX4(•) be a refinement ofYa

2(•), in that eachx4

value can only occur with one or the other of the twoya
2

values. So eachx4 value delineates a ‘‘horizontal strip’’ o
constantYa

2(û), running across all four values ofX1(û).
@Since X1(û)5Yq

1(û), and Ya
1(û)5„Yq

1(û)…(û), Ya
1(û)

5(X1(û))(û), so specifying the value ofX1(û) specifies
Yp

1(û), and each strip crosses all fouryp
1 values, as was

stipulated above.#
Now choose the strip withA„Yq

4(û)…5A„X4(û)…5$0% to
have coordinateYa

2(û)51, and the strip withA„Yq
4(û)…

5$1% to have coordinateYa
2(û)50. In the remaining 14

strips, Ya
4(û) is not constant, and therefore is not a sing

valued intelligibility function of the associated~constant!
value ofYp

2(û). In both of those two strips, though,Ya
4(û) is

the opposite ofYa
2(û). So nox4 value induces the identity

question-independent intelligibility function ofC2:û
→OUTa

2 (û), i.e., nox4 inducesYp
4(û)5„B,Ya

2(û)…. Accord-
ingly, C4 does not predictC2.

In other instances, though, bothC2 andC1 are predictable
to C4. To have this we need to only subdivide$x4% and$y4%
into two portions, ($x4%A ,$y4%A), and ($x4%B ,$y4%B), which
divide Û in two. The first of these portions is used for pr
dictions concerningC2, as in Example 2; each region o
constantX4(û) is a subset of a region of constantX1(û)
overlapping bothYa

2(û). The second is used for prediction
concerningC1, as just above. It consists of horizontal stri
extending over that part ofÛ not taken up by the region
with X4(û)P$x4%A . So $x4%A5$yq

4%A contains four ele-
ments, and$x4%B5$yq

4%B contains 16, which means that$x%
5$y% contains 20 elements, all told. Distinguishability is e
sured by havingx4 take on all its possible values within an
subset ofÛ over which bothX1(•) andX2(•) are constant.

We now present the proof of Theorem 2.

Proof of Theorem 2. Given Y1(•) and Y2(•), we define
the functionf 2(û) by

f 2~ û!51 if A„Yq
1~ û!…5$0%,

f 2~ û!50 if A„Yq
1~ û!…5$1%,

f 2~ û!5NOT@Ya
1~ û!# if A„Yq

1~ û!…5B,

and

f 2~ û!50 otherwise.
.

Intuitively, this function is the negation ofY1’s answer when
Y1’s question is contained inB. Now A( f 2)P†$0%,$1%,B‡,
with its precise value depending onA($y1%). Since by con-
struction f 2 does not vary withYq

1(û), only with A„Yq
1(û)…,
8-22
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COMPUTATIONAL CAPABILITIES OF PHYSICAL SYSTEMS PHYSICAL REVIEW E65 016128
this means thatf 2 is a question-independent intelligibilit
function of Y1. Define f 1 similarly, just with no negation
operation;f 1(û)5Ya

2(û), wheneverA(yq
2)#B, and equals 0

otherwise.
By hypothesis, there existsx2 such that X2(û)

5x2⇒Yp
2(û)5„A( f 2), f 2(û)…. @Note that for that x2,

A„Yq
2(û)…Pˆ$0%,$1%,B‰.# Similarly for x1 and f 1. So by in-

put distinguishability,' single û such that at the same time
Ya

2(û)5 f 2(û) andYa
1(û)5 f 1(û). Plugging in and using the

fact that both A„Yq
2(û)…Pˆ$0%,$1%,B‰ and A„Yq

1(û)…
Pˆ$0%,$1%,B‰, we see thatYa

1(û)5 f 1(û)5Ya
2(û)5 f 2(û)

5NOT@Ya
1(û)#. This contradiction establishes our resu

QED.

Restating it, Theorem 2 says that either there exists a
nite question-independent intelligibility set forC1,F1, such
that C1 is not predictable toC2 with respect toF1, and/or
there exists a finite question-independent intelligibility s
for C2,F2, such thatC2 is not predictable toC1 with respect
to F2. We can weaken the definition of ‘‘intelligibility func-
tion’’ and still establish the impossibility of having bothC1

.C2 andC2.C1. For example, that impossibility will still
be obtained even if neitherC1 nor C2 containsB-valued
questions, if they instead contain all possible functions m
ping each others’ values ofya onto $0, 1, 2% ~or more pre-
cisely contain all such functions ofyp—cf. the definition of
prediction partition!. For pedagogical simplicity, such weak
ened definitions are not investigated here.

Note that Theorem 2 still holds if we consider larger i
telligibility sets that are supersets ofF, the set of all intelli-
gibility functions of Yp . In particular, consider modifying
the definition of weak predictability to involveF8, the set of
all intelligibility functions of the partition û
→„X(û),Yp(û)…. Intuitively, this is the set of all~question-
independent! intelligibility functions of the entire compute
(X,Y), not just of its output partition.~So ‘‘prediction’’ now
means, in essence, predicting all aspects ofC.! Then since
F#F8, Theorem 2 still applies with this alternative defin
tion of weak predictability.

As mentioned previously, Theorem 2 does not rely
mutual intelligibility. This reflects our restriction to question
independent intelligibility functions. Such functions cann
‘‘see’’ what the contents of some~computer-to-be-
predicted’s! yq are. Similarly, condition~ii ! does not care
about the contents of any~predicting computer’s! yq . So the
contents ofyq in either a predicting or being-predicted com
puter are, for the most part, irrelevant. Accordingly, restr
tions on those contents have few effects concerning com
ers predicting each other using question-independ
intelligibility sets.

Nonetheless, Theorem 2 can be used to derive an unc
putability result that does rely on mutually intelligibility. T
see this, define a computerC to be (Yq) stable if for all q
P$yq%, there is always an associated input that forces
output question to equalq, i.e., if there existsx such that
X(û)5x⇒Yq(û)5q. ~Note that given anyq, since Yq is
surjective, stability can always be assured by choosing a
ficiently fine-grainedX(•).) In addition, define a compute
01612
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to be infallible if its associated answers are always corr
responses to its associated questions, i.e., ifYa(û)
5@Yq(û)#(û) ; û. @As an example, given any partitionp,
the computer which has a single question given byq(û)
5p(û) and which hasYa(û)5p(û) is infallible.# Then we
have the following.

Corollary 1. Let C1 andC2 be two distinguishable mutu
ally intelligible computers, both of which are stable. It is n
possible that bothC1 andC2 are infallible.

Proof. Let F2 be the set of all questions-independent
telligibility functions for C2. ThenF2#$yq

1%, by mutual in-
telligibility. By stability of Y1, this means that for allf
PF2, there existsxP$x1% such thatX1(û)5x⇒Yq

1(û)5 f .
If C1 were infallible, this would then mean thatYp

1(û)
5„A( f ), f (û)…. So x weakly inducesf, and more generally
C1.C2. Similarly, C1.C1. If we now apply Theorem 2 we
get the result claimed. QED.

Similarly, one can produce corollaries of the results p
sented below by, in essence, replacing predictability with
fallibility. For reasons of space, those corollaries are not p
sented here. Note that for any stable, infallible computerC, if
C8 is intelligible toC, then all three conditions~i!–~iii ! con-
sidered for defining weak predictability hold.

As an aside, there are several ways one can generaliz
foregoing to the case of stochastic scenarios. One start
defining aprobabilistic partition Ras a space of partition
labelsA(R) and an associated distributionPR„r PA(R)uû….
~The situation considered heretofore is the special case w
all such distributions ared functions.! In particular, an output
probabilistic partitionY is one where$A(y)% is the set of all
pairs$qP$yq%,aPA(q)% for some set of probabilistic parti
tions $yq%. An example is a workstation whose output is t
specification of one of a set of candidate Gaussian distr
tions concerning some aspect of the external world, i.e
GaussianP(ûua). Given also a prior distributionP(a), we
can express that workstation’s output as a probabilistic qu
tion ~i.e., probabilistic partition! P(auû) together with a par-
ticular associated answera. Another example is whereû is a
wave function, and a probabilistic partition gives the resu
of a Hermitian operator applied to that wave function.

For simplicity, assume from now on that the full join
distribution overÛ and all partition labels is specified, an
that P(û) is nowhere-zero over its domain of definition
Now any actual physical computer’s state is specified inû
for a classical universe, and the same is true in the quan
case assumingû is an eigenstate of the operator of a hum
observing the computer’s output. Accordingly, the input a
output probabilistic partitions of a probabilistic comput
@i.e., P(xP$x%uû) and P(yP$y%uû), respectively# are d
functions, although the partitionYq is not one in general.
Two probabilistic computersC1 andC2 are~input! probabi-
listic distinguishableif for all x1P$x1% andx2P$x2%, there
existsû such thatP(û)Þ0, P(x1uû)Þ0, andP(x2uû)Þ0.

As before, an intelligibility function is a ‘‘translation’’
mapping a partition’s possible label values intoB. Formally,
a probabilistic intelligibility functionF of a ~probabilistic!
8-23
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partition R with labels r is a probabilistic partition having
A(F)#B where there exists a single-valued functionh:R
→B such thatP„fPA(F)uû…5*dû d„f,h(r )… P(r uû). @A
question-independent probabilistic intelligibility function o
an output partitionY simply hash(y) depend only onyp .#
We define thedegree of weak predictabilityof a probabilistic
partitionR to a probabilistic computerC for an intelligibility
setF as

«R:C5minFPF maxIN E dû PIN~ ûu IN!

3(
f,b

d~f,b!PF~fuû!POUT@OUTp1„A~ f !,b…uû#.

Intuitively, this is the minimax probability ofC’s answer~b!
agreeing withF’s answer~f!.

Note that «R:C51 implies that f5b ; û such that
P(ûux) is nonzero~for the maximizingx!. Now since output
partitions ared functions, if R is the output partition of a
computerC8, then allF#F ared functions. In other words
those intelligibility functions are single-valued function
from Û to B ~as always are the partitionsX andY!. Accord-
ingly, having f necessarily equalb reduces to the conven
tional ~nonprobabilistic! definition of weak predictability,
and Theorem 2 applies. This proves that it is impossible
have two distinguishable probabilistic computersC1 andC2

such that«C1:C25«C2:C151.
Returning to the case of nonprobabilistic partitions,

now present a result that is often handy in working w
systems meeting our definition of weak predictability@i.e.,
conditions ~i! and ~ii !#. First note that for any partitionp
containing at least two elements, there exists an intelligibi
function f for p with A( f )5B, an intelligibility function f
with A( f )5$1%, and an intelligibility functionf with A( f )
5$0%. By exploiting the surjectivity of output partitions, w
can extend this result to concern all partitions. This is f
mally established in the following lemma, which hold
whether or not we assume partitions are binary.

Lemma 1. Consider a physical computerC1. If there ex-
ists any output partitionY2 that is intelligible toC1, then
there existsq1PQ1 such thatA(q1)5B, a q1PQ1 such that
A(q1)5$0%, and aq1PQ1 such thatA(q1)5$1%.

Proof. Since $y2% is nonempty,$yq
2% is nonempty. Pick

someq* P$yq
2% having at least two elements.~By definition

of a physical computer, there is at least one suchq* .! Con-
struct any binary-valued functionf * 2 of aPA(q* ) such that
there exists at least onea for which f * 2(a)50 and at least
one for which f * 2(a)51. Define an associated functio
f * 2(û)5 f * 2

„Ya
2(û)… if A„Yq

2(û)…5A(q* ), 0 otherwise. By
the surjectivity ofY2(•), ; aPA(q* ), there existsû such
that bothYq

2(û)5q* andYa
2(û)5a. Therefore there existsû

such thatf * 2(û)51, there existsû such thatf * 2(û)50. This
establishes, by construction, that there is a quest
independent intelligibility function ofC2 that takes on both
the value 1 and the value 0,f * 2. So by our hypothesis thatC2

is intelligible toC1 with respect to any question-independe
01612
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intelligibility function of C2, we know thatf * 2PQ1. More-
over, viewed as a question,A( f * 2)5B. So, we have estab
lished thatQ1 contains a binary valued function.

Next, note that the functionûPÛ→1 is always a
question-independent intelligibility function ofC2, as is the
function ûPÛ→0. Again using surjectivity, we see thatA
for these two functions are$1% and $0%, respectively. QED.

We now present proofs of some other results presente
the main text.

Proof of Corollary 2: Hypothesize that the corollary i
wrong. Define the composite deviceC* [„IN * (•)
[P i 51

n21Xi(•),Q1,Y1(•)…. Since$Ci% is fully distinguishable,
X* (•) is surjective. ThereforeC* is a physical computer.

Since by hypothesisCn is intelligible to Cn21, there ex-
ists yq

n21 such thatA(yq
n21)5B. Also, sinceCn22.Cn21,

there existsxn22P$xn22% such that for allûPÛ for which
A„Yq

n21(û)…5B, Xn22(û)5xn22⇒ya
n22(û)5Ya

n21(û). It-
erating and exploiting full distinguishability, there exis
(x1,...,xn22) such that for allûPÛ for which A„Yq

n21(û)…
5B, „X1(û),...,Xn22(û)…5(x1,...,xn22)⇒Y* (û)5Y1(û)
5Yn21(û). The same holds when we restrictû so that the
spaceA„Yq

n21(û)…5$1%, and when we restrictû so that
A„Yq

n21(û)…5$0%.
Since by hypothesisCn is intelligible to Cn21, and since

X* (•) is surjective, this result means thatCn is predictable
to C* . Conversely, sinceCn.C1 by hypothesis, the outpu
partition of C* is predictable toCn, and thereforeC* is.
Finally, since$Ci% is fully distinguishable,C* and Cn are
distinguishable. Therefore Theorem 2 applies, and by us
our hypothesis we arrive at a contradiction. QED.

Proof of Theorem 3. Assume our corollary is wrong, an
some computerC is predictable to itself. Since by definitio
predictability implies intelligibility, we can apply Lemma 1
to establish that there is aqP$yq%, q8, such thatA(q8)
5B. Therefore one question-independent intelligibility fun
tion of C is the functionf from ûPÛ→B that equals 1 if
A„Yq(û)…5B andYa(û)50, and equals 0 otherwise. Ther
fore by hypothesis there existsxP$x% such that X(û)
5x⇒A„Yq(û)…5B and Ya(û)5 f (û). But if $A„Yq(û)…%
5B, thenf (û)5NOT@Ya(û)#, by definition off (•). SinceX

is surjective, this means that there is at least oneûPÛ such
that $A„Yq(û)…%5B and Ya(û)5NOT@Ya(û)#. This is im-
possible. QED.

For analyzing god computers the following definition
useful.

Definition 7. Consider a pairwise distinguishable set$Ci%
with god computerC1. Define the partitionsYi 3 j (ûPÛ)
[„Yq

i 3 j (û),Ya
i 3 j (û)…, where each answer mapYa

i 3 j (û)

[„Ya
i (û),Ya

j (û)…, and each question@Yq
i 3 j (û)# is identically

equal to the mapping given by û8PÛ
→„@Yq

i (û)#(û8),@Yq
j (û)#(û8)…. Then C1 is omniscient if

Y2333¯ is weakly predictable toC1.
8-24
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Intuitively, Yi 3 j is just the double partition„Yi(•),
Yj (•)…5„(Yq

i (•), Ya
i (•)…,„Yq

i (•),Ya
i (•)…, re-expressed to be

in terms of a single question-valued partition and a sin
answer-valued partition. To motivate this re-expression,
any two questionsqiPQi andqjPQj , let qi3qj be the or-
dered product of the partitionsqi and qj ; it is the partition
assigning to every pointû8PÛ the label „qi(û8),qj (û8)….
Then if Yq

i (û) is the questionqi and Yq
j (û) is the question

qj , Yq
i 3 j (û) is the questionqi3qj . Ya

i 3 j is defined simi-
larly, only with one fewer levels of ‘‘indirection,’’ since an
swer components of output partitions are not themselves
titions ~unlike question components!. Note that even though
anyYi(•) andYj (•) are both surjective mappings,Yi 3 j need
not be surjective onto the set of quadruples$qiPQi , qj

PQj , a iPA(Qi),a jPA(Qj )%.

Corollary 3. Consider three pairwise-distinguishable co
putersC1,C2,C3, where there does not existq3PQ3 such
that A(q3)£B. Assume thatC1 is an omniscient computer
and thatC1 is intelligible to C3. Finally, assume further no
only that C3’s output can be any of its possible questio
answer pairs, but also that for any of its questions, for any
the associated possible answers, there are situations w
that answer is correct~so thatC2 should leaveC3’s answer
alone in those situations!. †Formally, this means that for al
pairs „q3PQ3,a3PA(q3)…, ' ûPÛ such that bothYq

3(û)
5q3 and q3(û)5a3, i.e., @Yq

3(û)#(û)5a3.‡ Then it is not

possible that for all ûPÛ, Ya
2(û)51 if @Yq

3(û)#(û)
5Ya

3(û), 0 otherwise.

Proof. Hypothesize that the corollary is wrong. Constru
a composite deviceC2 – 3, starting by havingX2 – 3(•)
[Yq

3(•), Q2 – 35Q3, and Yq
2 – 3(•)5Yq

3(•). Next define the
question u by the rule u(û)[NOT@Ya

3(û)# if Ya
2(û)50,

u(û)[Ya
3(û) otherwise.~N.B. no assumption is made tha

uPQ2 – 3.! To complete the definition of the composite com
puterC2 – 3, let Ya

2 – 3(û)5u(û).

Now by our hypothesis, for all ûPÛ, u(û)
5@Yq

3(û)#(û). By the last of the conditions specified in th
corollary, this means that for all„q2 – 3PQ2 – 3,a2 – 3

PA(q2 – 3)…, there existsû such thatYq
2 – 3(û)5q2 – 3 and

Ya
2 – 3(û)5a2 – 3. So C2 – 3 allows all possible values o

$y2 – 3%, as a physical computer must. Due to surjectivity
Yq

3, it also allows all possible values of the space$x2 – 3%. To
complete the proof thatC2 – 3 is a ~surjective! physical com-
puter, we must establish thatYa

2 – 3(û)PA(Yq
2 – 3(û));û

PÛ. To do this note that if, for example
A„Yq

2 – 3(û)…A„Yq
2 – 3(û)…5A„Yq

3(û)…5$1%, then since it is al-
ways the case that the Ya

2 – 3(û)5@Yq
2 – 3(û)#(û)

5@Yq
3(û)#(û), Ya

2 – 3(û)51. Similarly Ya
2 – 3(û)Ya

2 – 3(û)
PA„Yq

2 – 3(û)… when A(Yq
2 – 3(û))5$0%. Finally, if

A„Yq
2 – 3(û)…5B, then the simple fact thatYa

2 – 3(û)PB al-
ways means thatYa

2 – 3(û)PA„Yq
2 – 3(û)….

SinceC1 is intelligible to C3 andQ2 – 35Q3, C1 is intel-
ligible to C2 – 3. Moreover, given any questionq2 – 3PQ2 – 3,
there exists associatedx2 – 3P$x2 – 3% such that; ûPÛ for
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which X2 – 3(û)5x2 – 3, Y2 – 3(û)5q2 – 3. But as was just
shown,Ya

2 – 3(û)5q2 – 3(û) for that û. Therefore,C1 is pre-
dictable toC2 – 3.

Next, sinceC1 is omniscient,Y233 is intelligible to C1.
Therefore any binary function of the regions defined by q
druples@A„Yq

2(û)…,A„Yq
3(û)…,Ya

2(û),Ya
3(û)# is an element of

Q1. Any single such region is wholly contained in one regi
defined by the pair@A„Yq

2 – 3(û)…,Ya
2 – 3(û)# though. Therefore

any binary function of the regions defined by such pairs is
element ofQ1. ThereforeC2 – 3 is intelligible to Q1. Simi-
larly, the value of any such binary function must be given
Ya

1(û) wheneverX1(û) equals some associatedx1. SoC2 – 3

is predictable toC1.
Finally, sinceC1 andC3 are input distinguishable, so ar

C1 andC2 – 3, and therefore Theorem 2 applies. This esta
lishes that our hypothesis results in a contradiction. QED

Similarly, we cannot arrange to have two computers
‘‘antipredictable’’ to one another. This is mentioned in th
main text as Corollary 4 of Theorem 2. The proof of th
result is as follows.

Proof of Corollary 4. By assumptionC1 andC2 are mu-
tually intelligible. So what we must establish is whether f
both of them, for all intelligibility functions concerning th
other one, there exists an appropriate value ofxi such that
that intelligibility function is incorrectly predicted.

Hypothesize that the corollary is wrong. Then for a
question-independent intelligibility functions forC1, f 1, '
x2P$x2% such that X2(û)5x2 implies that †A„Yq

2(û)…
5NOT@A( f 1)#‡ †Ya

2(û)5NOT@ f 1(û)#‡. However, by defini-
tion of question-independent intelligibility functions, give
any suchf 1, there must be another question-independent
telligibility function of C1, f 3, defined by f 3(•)
[NOT„f 1(•)…. Therefore there existsx2P$x2% such that
X2(û)5x2 implies that @A„Yq

2(û)…5A( f 3)#∧@Ya
2(û)

5 f 3(û)#.
This NOT~•! transformation bijectively maps the set of a

question-independent intelligibility functions forC2 onto it-
self. Since that set is finite, this means that the image of
set under theNOT~•! transformation is the set itself. There
fore our hypothesis means that all question-independ
functions forC1 can be predicted correctly byC2 for appro-
priate choice ofx2P$x2%. By similar reasoning, we see tha
C1 can always predictC2 correctly. SinceC1 and C2 are
distinguishable, we can now apply Theorem 2 and arrive
contradiction. QED.

Recall that there are three conditions related to weak p
dictability, and for pedagogical simplicity we settled on tw
for our formal definition of the term~cf. discussion preced
ing Definition 4!. The situation with strong predictability is
closely analogous. Its formal definition involving two cond
tions is as follows.

Definition 8. Consider a pair of physical computersC1

and C2. We say thatC2 is strongly predictableto C1 ~or
equivalently thatC1 can strongly predict C2!, and writeC1

@C2 ~or equivalentlyC2!C1! if and only if ~i! C2 is intel-
8-25



-

ta

ity

to
r

of

n

-

e

n

tion

t
on

n-

the

l

t

n
-

DAVID H. WOLPERT PHYSICAL REVIEW E 65 016128
ligible to C1, and ~ii ! for all question-independent intelligi
bility functions for C2, q1, ; x2P$x2%, there existsx1

P$x1% that strongly inducesthe pair (q1,x2), i.e., such that

X1~ û!5x1

⇒

@Yp
1~ û!5~A~q1!,q1~ û!!#∧@X2~ û!5x2#.

We now present the proofs of some of the fundamen
theorems concerning strong predictability.

Proof of Theorem 5. To prove~i!, let f be any question-
independent intelligibility function ofp. By Lemma 1, the
everywhere 0-valued question-independent intelligibil
function of p is contained inQ1, and sinceC1.C2, there
must be anx1 such thatX1(û)5x1⇒Ya

1(û)50. The same is
true for the everywhere 1-valued function. Therefore
prove the claim we need only establish that for eve
question-independent intelligibility function ofp, f, for
which A( f )5B, f PQ1, and there exists anx1 such that
X1(û)5x1⇒Ya

1(û)5 f (û). Restrict attention to suchf from
now on.

Define a question-independent intelligibility function
C2, I 2, such thatA(I 2)5B, and such that for allû for which
A„Yq(û)…5B, I 2(û)5Ya

2(û). @Note that sinceC2.p, there
both exist û for which Yp

2(û)5(B,1) and û such that
Yp

2(û)5(B,0).# Now by hypothesis, for any of thef we are
considering, there existsxf

2P$x2% such that X2(û)
5xf

2⇒Yp
2(û)5„B, f (û)…. However, the fact that C1

@C2⇒'x1P$x1% such that X1(û)5x1⇒X2(û)5xf
2 and

such thatYp
1(û)5„A(I 2),I 2(û)…5„B,I 2(û)…. Since X2(û)

5xf
2 for such a û, A„Ya

2(û)…5B, and thereforeI 2(û)
5Ya

2(û). So Yp
2(û) for such aû equals„B,Ya

2(û)…. So for
that x1, Yp

1(û)5„A( f ), f (û)….
This establishes~i!. The proof for~ii ! goes similarly, with

the redefinition thatxf
1 fixes the value ofx3 as well as ensur-

ing thatYp
2(û)5„A( f ), f (û)…. QED.

Proof of Theorem 6. Choose anyx2. For any question-
independent intelligibility function ofyp

2, f, there must exist
an xf

1P$x1% that strongly inducesx2 and f, sinceC1@C2.
Label any suchx1 as xf

1 ~x2 being implicitly fixed!. So far
any such f $û: X1(û)5xf

1%#$û: X2(û)5x2%. However,
since $yp

2% is not empty, there are at least two questio
independent intelligibility functions ofyp

2, f 1 , andf 2 , where
A( f 1)ÞA( f 2) ~cf. Lemma 1!. Moreover, the intersection$û:
X1(û)5xf 1

1 %ù$û:X1(û)5xf 2

1 %5B, since these two sets in

duce differentA(yq
1) @namely, A( f 1) and A( f 2), respec-

tively#. This means that$û: X1(û)5xf 1

1 %,$û:X2(û)5x2%.

On the other hand, for the same reasons, there must also
an x2 that strongly inducesxf 1

1 . Therefore there existsx28

such that$û: X2(û)5X28%,$û: X1(û)5xf 1

1 %. So $û:X2(û)

5x28%,$û: X2(û)5x2%. This is not compatible with the
fact thatX2(•) is a partition. QED.
01612
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The following theorems involve physical computatio
analogs of TM theory.

Theorem 4. Given a set of physical computers$Ci%, there
does not existC1P$Ci% such that for allC2P$Ci%.

~i! C2 is intelligible to C1.
~ii ! ; q2PQ2, ' x1P$x1% such thatX1(û)5x1⇒Ya

1(û)
51 if and only if q2(û)5Ya

2(û).

Proof. ChooseC2 such thatY2(•)5Y1(•). ~If need be, to
do this simply chooseC25C1.! Then in particular,Ya

1(•)
5Ya

2(•). Now sinceC2 is intelligible to C1 by hypothesis,
by Lemma 1 there existsq1PQ1 such thatA(q1)5$0%, and
therefore there existsq2PQ2 such thatA(q2)5$0%. For that
q2, Ya

1(û)51 if and only if 05Ya
1(û), which is impossible.

QED.

We now present definitions needed to analyze predic
complexity.

Definition 10. For any physical computerC with input
space$x%, we have the following.

~i! Given any partitionp, a ~weak! prediction input set~of
C, for p! is any sets#$x% such that both every intelligibility
function of p is weakly induced by an element ofs, and for
any proper subset ofs at least one such function is no
weakly induced. We write the space of all weak predicti
input sets ofC for p asC21(p).

~ii ! Given any other physical computerC8 with input
space$x8% for which the set of all question-independent i
telligibility functions is $ f 8%, a ~strong! prediction input set
of C, for the tripleC8, J8#$x8%, and f 8#$ f 8%, is any set
s#$x% such that both every pair (f 8P f 8,x8PJ8) is strongly
induced by a member ofs, and for any proper subset ofs at
least one such pair is not strongly induced. We write
space of all strong prediction input sets~of C, for C8, J8,
and f 8! asC21(C8,J8, f 8).

Definition 11. Given a physical computerC and a measure
dm over Û, we have the following.

~i! Define V(J#$x%) as the measure of the set of allû

PÛ such thatX(û)PJ, and define thelength of J @with
respect toX(•)# as l (J)[2 ln@V(J)#.

~ii ! Given a partitionp that is predictable to a physica
computerC, define theprediction complexityof p ~with re-
spect toC!, C(puC), as minrPC21(p)@l (r)#.

Proof of Theorem 7. Given any intelligibility functionf
for p, consider anyxf

2P$x2% that weakly inducesf, i.e., such
that X2(û)5xf

2⇒Yp
2(û)5„A( f ), f (û)…. ~The analysis will

not be affected ifp is an output partition and we restric
attention to those intelligibility functions forp that are ques-
tion independent.! Since C1@C2, we can then choose a
x1,Xf

1(xf
2), to strongly inducexf

2 together with any question
independent intelligibility function ofyp

2. ~Indeed, in general
there can be more than one such value ofx1 that inducesxf

2.!
So, in particular, we can choose it so that the vectorYp

1(û)
5„A(I A( f )

2 ),I A( f )
2 (û)… for any possible functionI A( f )

2 . Now
for that x1, X2(û)5xf

2, and thereforeA„Yq
2(û)…5A( f ),
8-26
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which means thatI A( f )
2 (û)5Ya

2(û), which in turn equals
f (û) for that x2. So for all û such thatX1(û)5Xf

1(xf
2),

Yp
1(û)5„A( f ), f (û)…. In other words,Xf

1(xf
2) weakly in-

duces inC1 the same intelligibility function ofp that xf
2

weakly induces in C2. However since X1(û)
5Xf

1(xf
2)⇒Xf

2(û)5xf
2, the set of ûPÛ such thatX1(û)

5Xf
1(xf

2) is contained within the set such thatX2(û)5xf
2.

This means thatl (Xf
1(xf

2)…>l (xf
2). ~Our task, loosely

speaking, is to bound this difference in lengths, and then
extend the analysis to simultaneously consider all s
question-independent intelligibility functionsf.!

Take$ f i% to be the set of all intelligibility functions forp.
By the preceding construction,p is weakly predictable toC1

with a ~not necessarily proper! subset of$Xf i

1 (xf i

2 )% being a

member of (C1)21(p). Now any member of (C1)21(p)
must contain at least three disjoint elements, correspon
to intelligibility functions q with A„Yq

1(û)…5B, $0%, or $1%.
~See the discussion just before Lemma 1.! Accordingly, the
volume ~as measured bydm! of any subset of$Xf i

1 (xf i

2 )%

P(C1)21(p) must be at least three times the volume of t
element of$Xf i

1 (xf i

2 )% having the smallest volume. In othe

words, the length of any subset of$Xf i

1 (xf i

2 )%P(C1)21(p)

must be at most2 ln(3) plus the length of the longest ele
ment of $Xf i

1 (xf i

2 )%. ThereforeC(puC1)<maxfi
@l (Xf i

1 (xf i

2 ))#

2 ln(3).
or

-

01612
to
h

ng

Now take$xf i

2 % to be the set in (C2)21(p) with minimal

length. $xf i

2 % has at mosto(2p) disjoint elements, one for

each intelligibility function ofp. Using the relation mini@gi#
52maxi@2gi#, this means that C(puC2)>2 ln@o(2p)#
1minfi

@l (xf i

2 )#. Therefore we can writeC~puC1!2C~puC2)

< ln@o(2p)#2ln(3)1maxfi
@l „Xf i

1 (xf i

2 )…#2minfi
@l (xf i

2 )#. The

fact that for allxf i

2 , X2(û)5xf i

2 ⇒A„Yq
2(û)…5A( f i)#B com-

pletes the proof of~i!.
To prove~ii !, note that we can always construct one of t

sets in (C1)21(p) by starting with the set consisting of th
element of$Xf i

1 (xf i

2 )% having the shortest length, and the

successively adding otherx1 values to that set, until we get
full ~weak! prediction set. Therefore C(puC1)
<minfi

I „Xf i

1 (xf i

2 )…. Using this bound rather than the one i

volving 2 ln(3) establishes~ii !. QED.

Note that the set ofZPB such that@C2#21(Z) exists must
be nonempty, sinceC2.p. Similarly, C2.p means that
there is aû such thatA„Yq(û)…5Z#B. The associatedI Z

2

always exists by construction: simply defineI Z
2(û)5Ya

2(û)
; û such thatA„Yq(û)…5Z, and for all otherû, I Z

2(û)5x for
somexPZ. Therefore the extrema in our bounds are alwa
well defined.
-
3

-
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