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In this paper strong limits on the accuracy of real-world physical computation are established. To derive
these results a non-Turing machine formulation of physical computation is used. First it is proven that there
cannot be a physical comput€& to which one can pose any and all computational tasks concerning the
physical universe. Next it is proven that no physical comp@ean correctly carry out every computational
task in the subset of such tasks that could potentially be pos€dTbhis means in particular that there cannot
be a physical computer that can be assured of correctly “processing information faster than the universe does.”
Because this result holds independent of how or if the computer is physically coupled to the rest of the
universe, it also means that there cannot exist an infallible, general-purpose observation apparatus, nor an
infallible, general-purpose control apparatus. These results do not rely on systems that are infinite, and/or
nonclassical, and/or obey chaotic dynamics. They also hold even if one could use an infinitely fast, infinitely
dense computer, with computational powers greater than that of a Turing mé&€MneAfter deriving these
results analogs of the TM Halting theorem are derived for the novel kind of computer considered in this paper,
as are results concerning ttim)possibility of certain kinds of error-correcting codes. In addition, an analog of
algorithmic information complexity, “prediction complexity,” is elaborated. A task-independent bound is de-
rived on how much the prediction complexity of a computational task can differ for two different reference
universal physical computers used to solve that task. This is analogous to the “encoding” bound governing
how much the algorithm information complexity of a TM calculation can differ for two reference universal
TMs. It is proven that either the Hamiltonian of our universe proscribes a certain type of computation, or
prediction complexity is uniquéunlike algorithmic information complexiyy Finally, the implications of this
analysis for the issue of whether the universe “is” a computer are briefly discussed.
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INTRODUCTION all physical computers. Its existence casts an interesting light
on the ideas of Fredkin, Landauer, and others concerning
Recently there has been heightened interest in the relavhether the universe “is” a computer, whether there are
tionship between physics and computat[ds-37]. This in-  “information-processing restrictions” on the laws of physics,
terest extends far beyond the topic of quantum computatioretc.[11,20. In a certain sense, the universe is more powerful
On the one hand, physics has been used to investigate thigan any information-processing system constructed within it
limits on computation imposed by operating computers incould be. This result can alternatively be viewed as a restric-
the real physical universe. Conversely, there has been specdtien on the computational power of the universe—the uni-
lation concerning the limits imposed on the physical universe/erse cannot support the existence within it of a computer
(or at least imposed on our models of the physical universethat can process information as fast as it can.
by the need for the universe to process information, as com- Tg establish this unpredictability result this paper consid-
puters do. _ _ _ ers a model of physical computation that is actually general
To investigate this second issue one would like to knowgnoygh to address the performance of other computational

what fundamental distinctions, if any, there are between the;q s as well as the prediction of the future. In particular, this

physical universe and a physical computer. To address thiﬁ]odel does not rely on temporal orderings of events, and

issue this paper begins by establishing that the universe Cafkerefore the unpredictability results also establish that no

not contain a computer to which one can pose any arbitrartg o ter can infallibly predict thpast(i.e., perform retrod-
computational task. Accordingly, this paper goes on to cons

) ; ! iction). So any memory system must be fallible, i.e., the
sider computer-indexed subsets of computational taskgecond law of thermodynamics cannot be used to ensure a
where all the members of any such subsat be posed to
the associated computer. Restricting attention to such sub-—

?ets’ it the_n prove_s that one cannot bwld_a ComPUter that Caano “remember,” in the present, an event from the past, formally
process information faster than the universe.” More pre-

selv. it is sh h build h means “predicting” that event accuratelfi.e., retrodicting the
cisely, it is shown that one cannot build a computer that Car]even), using only information from the present. Such retrodiction

for any physical system, correctly predict any aspect of thafgjies crucially on the second law. Hence, the temporal asymmetry
system’s future state before that future state actually 0ccurg the second law causes the temporal asymmetry of mefezy
This asymmetry in computational speeds constitutes @emember the past, not the futur@hat asymmetry of memory in
fundamental distinction between the universe and the set qﬁrn causes the tempora] asymmetry of the psycho|ogica| arrow of
time. “Memory systems theory” refers to the associated physics of
retrodiction; it is the thermodynamic analysis of systems for trans-
*Email address: dhw@ptolemy.arc.nasa.gov ferring information from the past to the present. $&&|.
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perfectly faultless memory of the pagAccordingly, the psy- desk are simply special examples, with lots of extra restric-
chological arrow of time is not inviolatE31].}) The unpre- tions that turn out to be unnecessary in the underlying math-
dictability results are also general enough to allow arbitraryematics.
coupling of the computer and the external universe. So, for Section | of this paper generalizes from particular in-
example, they also establish that there cannot be either astances of real-world physical computers that “try to reliably
infallible general purpose observation device nor an infal-and ahead of time predict the future state of any system” to
lible general purpose control devio@he result concerning motivate a broad formal definition of physical computation
observation can be viewed as an uncertainty principle, on& terms of partitions. To maintain maximum breadth of the
that does not involve quantum mechanjcs. analysis, we do not want to restrict attention to physical com-
No physically unrealizable systems, chaotic dynamics, oputers that aréor are not capable of self-reference. As an
nonclassical dynamics are exploited in this paper, and thelternative, we start by restricting attention to universes con-
results hold even if one restricts attention to predicting systaining at least two physical computef®ut another way,
tems that contain a finite number of degrees of freedom. Theyr initial results hold for any single computer not so pow-
results also hold even if the computer is infinitely denseerful as to preclude the possible existence anywhere else in
and/or infinitely fast, even if the computer has an infinitethe universe of another computer as powerful as it is—which
amount of time to do the calculatiaither before or after certainly describes any computer that human beings can ever
the event being predicted occurghe results also hold even create) Section | also establishes that there exist prediction
if the computer’s initial input explicitly contains the correct prob|ems that cannot even be posed to one of those two
value of the variable it is trying to predict and/or observe.physical computers. Restrictions on the set of prediction
More generally, they hold regardless of the program runningroblems are introduced accordingly.
on the computer. They also hold for both analog and digital  Section Il proves that, even within such a restricted set of
computation, and whether or not the computer’s program carediction problems, one cannot have a pair of computers
be loaded into its own inpuf.e., regardless of the computa- each of which can, reliably and ahead of time, predict the
tional universality of the computgrin fact they hold regard-  future state of any system. It is also in Sec. Il that the im-
less of the(Chomsky hierarchypower of one’s computer, so possibility of an infallible general-purpose retrodiction appa-
long as it is physically realizable. If it turns out to be physi- ratus, observation apparatus, or control apparatus is estab-
cally possible to have computers with computational powelished. These results are all derived through what is
greater than that of a Turing machine, then the result of thi%ssentia”y a physical version of a Cretan liar para%jd)ey
paper holds for such a computer. As a particular example, thgan be viewed as a physical analog of Godel's incomplete-
results also hold even if the “computer” includes one or ness theorerjnvolving two instances of the putative com-
more human beings. So even if Penrose’s musing on quamwuter rather than self-referential computers.
tum gravity and intelligence turns out to be valid—even if  The mathematics and impossibility results governing the
human computational powers are not subject to the restrigpartitions underlying computation bear many parallels with
tions that apply to any of the members of the Chomskythat governing conventional computer science models. Sec-
hierarchy—it is still true that human intelligencegsiaran-  tion Il explicates some of that mathematical structure, in-
teedto be wrong sometimes. volving topics ranging from error correction to thlack of)
Results of such generality are derived by examining theransitivity of the property of computational predictability
underlying issues from the perspective of the computationadmong multiple distinct computers. In particular, results are
character of real-world physical systems in general, rathepresented concerning physical computation analogs of the
than that of some single precisely specifietid often non-  mathematics of Turing machines, e.g., “universal” physical
physically realizable computer system. The associated computers and Halting theorems for physical computers. In
mathematics does not directly involve dynamical systemgddition, an analog of algorithmic information complexity,
like Turing machines. Rather it casts computation in terms ofprediction complexity,” is elaborated. A task-independent
partitions of the space of possible worldlines of the universepound is derived on how much the prediction complexity of
For example, to specify what input a particular physicala computational task can differ for two different reference
computer has at a particular time is to specify a particulajiniversal physical computers used to solve that task. This
subset of all possible world lines of the universe; diffel’entbound is similar to the “encoding” bound governing how
inputs to the computation correspond to differémbnover-  much the algorithmic information complexity of a Turing

lapping such subsets. Similar partitions specify outputs of anachine calculation can differ for two reference universal
physical computer. Results concerning thm)possibility of

certain kinds of physical computation are derived by consid———

be?ng Qefined in terms of such partitions, “physic_al COMPU-perhaps the simplest is the statement “This sentence is false.” The
tation” involves a structure that need not even be instantiatedtatement can be neither true nor false: if it is true, it is false, and

in some particular physically localized apparatus; the formalice versa. This is generally attributed to EpimenidéEpi-
definition of a physical computer is general enough to alsanenides, the Cretan said that all Cretans are liars.”

include more subtle nonlocalized dynamical processes un-°This theorem states that in any sufficiently powerful reasoning
folding across the entire universe. Computers in the converfermalism, either there must be statements that are true but un-
tional, space-time localized senge.g., the box on your proveable or the formalism must be self-contradicting.
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Turing machines. It is then proven that one of two cases musE, on what information is desired, perhaps on information
hold. One is that the Hamiltonian of our universe proscribesabout the current state of the state whose future is being
a certain type of computation. The other possibility is that,predicted, etc.
unlike conventional algorithmic information complexity, its ~ To make this concrete, let be a characteristic of the state
physical computation analog is unique, in that there is onlyof the physical universe at timie We indicate a specification
one version of it that can be applicable throughout our unithat we wish to knowx as aquestion gz Q. Soq says what
verse. «a is for any state of the universe at tinigi.e.,q is a single-
Section IV presents a brief overview of how, the unpre-valued mapping from the state of the universeTato an
dictability results notwithstanding, this paper’s formalism answera.
might be used to gainfully view a universe agagle com- Since O fixes ut and (for a deterministic universgevice
puter. The implications of this paper’s results under such awersa, we can generalize this by dispensing with specification
identification are briefly discussed. This section then relatesf T. In other words, we can recast agyas a single-valued

the work presented in this paper to previous work in thémapping fromii to . Soq fixes a partition over the spat
literature, and ends with a discussion of future work. and any pai(e, g) delineates a region o

Throughout this papeB=1{0,1;, R is defined to be the | yaneral the spacky of potential answers of the uni-
set of all real numbers]is the logicalandoperator, anoT /o5 (ie., the set of partition element labglsan change

is the logicalnot operator applied t®. To avoid proliferation depending org, the question concerning the univerée.,

of symbols, often set-delineating curly brackets will be usedne partition. This means that we need to concern ourselves
surrounding a single symbol, in which case that symbol isyot just with the relation between computers’ answer values,
taken to be a variable with the indicated set being the set dfut also with the relation between the associated spaces of
all values of that variable. So, for exampley}” refers to  possible valuese.g., the number 1 is both an element of the
the set of all values of the variabje In additiono(A) is the  spaceB and of the spacé¢l,4,3, two cases that must be
(potentially transfinitgcardinality of any sef\, and 2 is the  distinguishedl We will write the spacda} asA(q) when we
power set ofA. ueU are the possible states of the uni- need to indicate its dependence @rexplicitly. As much as

verse, andJ is the space of allowed trajectories through ~ POssible, the extra complexity associated with keeping track
(i.e., world lines of the univergeSot e U is a single-valued of A(q) is relegated to the fully formal analysis in the Ap-

) - . pendix.
map fromte R to ueU, with u=0, the state of the uni- "\yio ¢ the accompanying, a value ofa, by itself, is
verse at timet. Note that since the universe is microscopi-

L . ) : .. meaningless. So we must know whgtwe are answering
cally deterministigbe it classical or quantum mechanical, if when we read the computer’s output. Accordingly, we want

we adopt the many-world; ?nt?rpretation for the Iatte.r £ase ihe output of our computer to give a questiptogether with

u, for any t uniquely specifiesl. Sometimes there will be 5 associated prediction far Note also that very often the

implicit constraints onJ. For example, we will assume in question—a mapping from answers to associated sets of pos-

discussing any particular computer that the sp@(;@s re- sible states of the real world—is only stored in a human

stricted to world lined that contain that computer. user's memory. In this case that aspect of the human is im-

Fully formal definitions and proofs are relegated to theplicitly part of the computer.

Appendix, so that the main text can concentrate on the fun- Finally, choose some real numbgrwhere 6<7<T. Our

damental concepts. Extra discussion and examples of thog®al is that for anyge Q there is an associated initial “in-

concepts that would be too distracting in the main text argout” state of the computer at time 0 which ensures that at

also presented in the Appendix; the reader is strongly encoutime 7 our computer’s output is a correct prediction fey

aged to consult the Appendix as needed. An earlier analysise., which ensures that for thieof the universe and of our

addressing some of the issues considered in this paper can emputer,q() = a.

found in[33]. Now consider in more detail a conventional computer that
consists of a fixed physical dynamical system e.g., a work
station/human pair. Together with that system we have a pair

| A DEFINITION OF WHAT IT MEANS TO of mappings by which some of that system’s observable de-
“PREDICT THE FUTURE”" grees of freedom are interpreted geerhaps binary “in-

puts,” and some as “outputs.” The input and output degrees

A. Definition of a physical computer of freedom can overlap, and may even be identical. Since the

For the purposes of this paper, a physical Computer Wi|p0mputer exists in the physical universe its state at any mo-
“predict the state of a system ahead of time” if the computermentt is specified byu, . Therefore both the interpretation of
is a general emulator of the physical dynamics of such #0me of the computer’s degrees of freedom as “inputs” and
system, an emulator that operates faster than that dynamicgome as “outputs” are single-valued mappings froraU to
So given some tim& >0, and given some desired informa- @ space of inputs and of outputs, respectively. With the input
tion Concerning the state of some systerﬂ'a@ur goa| is to time 0 and Output t|rn}\e' ImplICIt, we can recast the domains
have the computer output that desired informatlmfore  of those mappings ad rather thanJ.
time T. To that end we allow the computer to be “initialized” All of this holds whether the computation of outputs from
at time 0, with different “input,” depending on the value of inputs proceeds in a “digital” or “analog” fashion. The only
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restriction is that we are interested in outputs that can serviées what question we want answered, i.e., whicAnd as-
as falsifiable rather than probabilistic predictions. This re-sociatedT we are interested in. It also delineates one of
striction will often be met even if the system being predictedseveral region)RC U, each of which, intuitively, gives the
is stochastic and the precise aspect of it that we are predict=0 state ofS and Ss Hamiltonian. Throughout each such
ing is a function of the associated distributions. For exampleR, the systenSis closed from the rest of the universe during
whether the temperature of a particular system falls within 4 €[0.T]. Since the precis® delineated specifies a set of
certain range at a particular time is a falsifiable predictionP0ssible values dliy in full, not just of Ss t=0 state, itis an
(See also Example 1 belowin any case, the extension to glement of a(perhaps irregularfinite precision grid over
having the computer’s output be interpreted as a probability).G’- If, for someR, q(t) has the same value for ali
distribution is fairly straightforward—see the discussion just€ R then this inpulR uniquely specifies whai is for any
before Theorem 2 in Sec. Il A. associatedl. If this is not the case, then tHe input to the

. . . ' omputer does not suffice to answer questjoB8o for anyq
Generalizing these considerations, we define a computer nd regionR both of which can be specified in the comput-

inputto be a mapping(-) from G e U to a space of inputs, er's input,R must be a subset of a region () for somea.

{x}. Intuitively, it is a partition ofU (see the Appendix So, Implicit in this definition is some means for correctly get-
for example, “initialization” of a computer as conventionally ting the information of the valuR into the computer’s input.
conceived, which sets the=0 state of a physical system In practice, this is often done by having had the computer
underlying the computer, is simply a special cada.that coupled toS sometime before time 0. As an alternative,
special case, the value taken by the input mapping differs fofather than specifyR in the input, we could have the input
0 andQ’ if the t=0 state of the computer input portion of contain a “pointer” telling the computer where to look to get
the universe, as specified by differs from thet=0 state of ~the informationR, in which case the same input can give
the computer input portion of the universe as specified byifferent outputs(The analysis of this paper holds no matter
0’.) Similarly, we can define a computersutputto be a how the computer gains accessR9

mappingY(-) from tie U to a space of outputdy!. In such In practice the !qput, givingr, q andT, is'the:’ label of an

an output partition, the sefy} consist of all pairs{y, element of a partition over an “input section of our com-
€Q.y.cA(yy)}, for someQ and associated(-). We say puter. _In sugh a case, tr,\’e input is itself an eleme’pt of a finite
thaty, is the “question answered by the computer,” and precision grid ovetd,G"(Uo). So an element O,G Spect-

is “the computer’s answer.” fies an element o6 (J]amelyq) and element o5’ (namely .

A physical computethen is simply the double of an input )= AS usual anyG”(Uo) can be reexpressed as a grid
partition and an associated output partition. As considered if"(U), under the convention that we are interested in inputs
this paper, all that computation amounts to is the delineatiofinposed on th¢=0 state of the computer. Note that if ini-
of the logical implications for which elemes} of the output  tialization were to be at a timie# 0, it would correspond to a
partition contain@l, given that a particular provided input different grid G”(U), in general, since the values of the
partition element containg. In other words, it amounts to computer’s input degrees of freedom may vary in time.
delineation of the intersections of the sets making{up Given its input, the computdtries to form its prediction
with those making ugy}. We are interested in whether the for « by first running the laws of physics onug having the
element of the output partition induced by a particular inputspecified value as measured Gri, according to the speci-
correctly describes the universe, as restricted by that inpufied Hamiltonian, up to the specified tinfe The computer
So, in particular, we are not considering counterfactuathen appliesg(-) to the result. Finally, it ensures that this
“computation” involving premises that conflict with the ac- prediction fore is in its output section at time. More pre-
tual state of the universe. cisely, there is a fourth finite precision gri@” over U,
defined by the state of the computer’s output section at time

Example 1 (detailed explication of conventional predic- 7. The computer uses that grid to “write outivhat is inter-

tion of the future) Say that our universe contains a system preted apits prediction for which region iU the universe

external to our computer that is closed in the time intefQal . . o . .
T], and letu be the values of the elements of a set of canoni-W'” be in at T, that prediction being formally equivalent to a

cal variables describing the universeis thet=T values of ~ Prediction of a region irlJ. The goal is to have it do this,
the components af that concerr, measured on some finite With the correct value of, by time 7<T. )
grid G(Uy). q is this definition ofe with G and the like Since G”(U,) induces a grid ovet),G"(U), we can
fully specified.(So q is a partition of the space of possible dispense with the “timer<T” stipulation; the goal is simply
ur, anda is an element of that partition. Q is a set of such  to have the universe be in the elementGsf(U) associated
g's, differing in G, whose associated answers our computekvith the correct value ofx. As with changing the time of
can(we hope predict correctly. By determinism, under the input, changing the time- of output will change the grid
convention that we are interested in questions concerning thg((J), in general.
t=T state of the universe, we can replace any @i+) Consider again the case where there is in fact a correct
with a grid G(U). prediction, i.e., whereR is indeed a subset of the region
The input to the computer is implicitly reflected in its g~ !(«) for somea. For this case, formally speaking, “all
=0 physical state, as our interpretation of that state. In thithe computer has to do” in making its prediction is take the
example(though not necessarily in generahat input speci-  regionR and questiom delineated in its input and recognize
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which region in the partitiom contains the regioR. Then it  cation, if we want the input section of the computer’s under-
must output the label of that region @monto its output. In  lying physical system to be a Hit; whoset=0 state equals
practice, thoughg andR are usually “encoded” differently, thet=—1 state of some bib, concerning the external uni-
and the computer must “translate” between those encodingserse, then we could haveX(0)=X(b;(up),b,(u_4))
to recognize which regiog («) containsR; this transla- =b1(Uo) if bi(ug)=b,(u_;), and have it equal a special
tion constitutes the “computation.” Note that all of this holds “input error” value otherwise. If we do have a physical cou-
even if Ss dynamics is stochastic, and/8s state is never Pling mechanism, and if that mechanism is reliable—
deterministically fixed to greater precision that that@f. ~ Something reflected ii— then this third, error, setting will -
Our computer’s output provides a delineation of a subregioM€ver occur, and we can ignore it. However, use of this
of e O thosed such thatg(0) = . It provides more struc- modlfled_X aIIows.us to avoid expllcnl)_/ identifying such a
ture thaﬁ just that though, e.g tw6 different outputs can havmgchamsm and simply presume its existence. So long as the
the same answer even ’th.OL;é]h they delineate different rﬁ-1IrOI setting never occurs, we can analy_ze the Systam

. . . . I ethoughlt had such dreliable physical coupling mechanism.
glons, due to haV|.ng different questiorgSee Definition We can also modify Example 1 in other ways that do not
2(iii ) in the Appendix]

. . B .__involve input. For example, we can ha$&e open(or per-
Finally, note that despite the nomenclature, a questlon_-haps even be the entire universe/e can also have the com-

?hnesvsvee;sga(;; L:nn'(f{ir?eﬁr:ggiw:g? gsastﬁg'ra.ttei gogtcgjigr:]éll'&uter observe the system being predictdr initialization
ion. Th . It q 6 th. if ¢l }'3 IS Ju ded i so that that initialization only serves to specify what should
sion. The associated premise., the it clausgis encoded in-— observed This is one of the major reasons why we do not

the input. require that the valur uniquely fixesY ,(0), to not preclude

The definition of a physical computer presented here is fa{he possibility ofy, being based on observations of the ex-
broader than conventional computers that work by PrOCeSSqRrnal world that Cé)ccur after the setting of the computer’s

gl:(%l;cgiezutlmed in Example 1, as the following dISCLISSIoninput. (Other reasons for not having fix y, arise in the

context of weak predictability; see the discussion in the Ap-
Example 1 continuedThe definition of a physical com- pendix preceding Example )20ther examples of how to
puter does not require that an input value always implies anodify Example 1 are presented below in the discussion of
unique output, as it does in Example 1. In addition, the com¥etrodiction and control.
puter in Example 1 has the laws of physics explicitly built . _ o .
into its “program.” But our definition allows arbitrary “pro- We will sometimes find it useful to considercapy of a
grams.” Our definition also allows other kinds of information Particular computerC=(X,Y). This is any computeC’
input to the computer besides that of Example 1. Further=(X",Y") where{x'}={x}, {y'}={y}, and the(set-valued
more, we will only need to require that there semeinput functu_an of all outputs that are possible given a particular
to the computer that, by accident or by design, induces th#Put is the same for both computers. In other words, even
correct output. This means we will not even require that théhough the functionsx’(-) and Y'(-) may differ from
computer’s initial state “accurately describes” the=0 ex- ~ X(-) andY(-), respectively, the logical implications relating
ternal universe in any meaningful senéEhis is reflected in  values ofx” andy’ are the same as those relating values
the fact that our formal generalization of Example 1 pre-2ndy. So both computers have the same input-output map-
serves analogs of the grida [in Q(-)], G” [in X(-)], and  PING. As a particular example, if a §C|ent|st at a particular
G” [in Y(-)], but not of the gridG'.) time (i.e., a computerC in some spac# is transformed into
In fact, since the partitioX(-) can reflecanyattribute of  a copyC’ in someU’, there is no way thais)he can ascer-
0, it need not even involve the=0 state of some physical tain that that transformation has occurred. The two scientists
device. Indeed, our definition does not even explicitly delin-interpret their input as an element in the same space and in
eate the particular physical system within the universe thaiesponse provide the same answehether that answer is
we identify with the computerA physical computer is sim- generated via prediction and/or observation—see the discus-
ply an input partition together with an output partitipihis  sjon below Theorem 2 in Sec. IDA
means we can even choose to have the entire universe “be
the computer”(see Sec. Y. In addition, our definition does Example 1 continued Consider again the computer in Ex-
not enforce having inputs be “set” before outputs are “read” ample 1. Recall that if the initialization time 0, question time
in any sense. It is only concerned with the entire worldlinesT, and/or output timer are changed, then in general the par-
of the universe. titions X and/orY may change. So in particular, the time-
As another example of the freedom to extend Example 1iranslated version of a comput@rdiffers fromC, in general.
note that in practice we may want to physically couple ourHowever the “time-translated version & is a copy of C
computer to the external universe, for example via an obsertor at least it makes sense to interpret the term that way, so
vation apparatus that initializes the computer’s inputs so thdbng as the laws of physics are time-translation invajiant
they reflect information about the system being predictedSimilarly, a spatially translated version Gfis only a copy of
Such a coupling would be reflectedin If we wish, though, C in general, rather than identically equal@ So formally
we can exploit the freedom in its definition to modify the speaking, the sequence of computations the box on your desk
input mapping, in such a way that it too directly reflects thismakes over a period of a month is a set of physical comput-
kind of coupling. For example, under the proposed modifi-ers, all copies of one another, applied to the séime
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B. Intelligible computation and distinguishable computers valued function of the elements of that partitigkVe call a

Consider a conventional physical computer, consisting 0fr;.et of such functions aimtelligibility _set) If the set of ques-
an underlying physical system whose 0 state set()  UONS We can pose to a computerincludes all such func-
and whose state at timesetsY(Q), as in Example 1. We tions, we say thatr is |ntel!|g|ble to C. _For such a case;
wish to analyze whether the physical system underlying thaf2" ave posed any question concerning the universe as mea-

computer can calculate the future sufficiently quickly. In do-Sured onm. This flexibility in C ensures thaC's output par-
ing so, sometimes we will not want to allow any of the tition is not “rigged ahead of time” in favor of some particu-

“computational load” of the calculation to be “hidden” in lar question concerningr so that all aspects ofr(u) are
the mappingY(-) by which we interpret the underlying accessible ta&C as questions. The obvious modifications are
physical system’s state as an output, thereby lessening tissumed if we talk about being intelligible toC “with
computational load on that underlying physical systemrespect to some intelligibility se.”*
Stated differently, we may wish to ensure that the output A problem with this definition of intelligibility is that
corresponding to some state of the underlying physical syshere cannot be a computer to which one can pose all pos-
tem U is “immediately and readily intelligible,” rather than sible binary questions concerning the physical wofTdhis is
allow nontrivial subsequent computing to be needed beforestablished formally as Theorem 1 in the Appendikhe
that corresponding output can be discerned. problem arises when we try to pose intelligibility functions
One way to formalize this intelligibility constraint would concerning the compute®’s output partition toC itself. In-
entail imposing capabilities for self-reference onto our com-uitively, it is not possible for the set d’s question parti-
puter. This has the major disadvantage of restricting the sefons to include thélargep set of all binary-valued functions
of physical computers under consideration. As an alternativesf those partitions.
to formalize the notion that a computer’s inputs and outputs  Tq circumvent this problem, from now on we implicitly
be “intelligible,” here we consider universes having another regtrict any intelligibility function concerning an output par-
computer which can consider the first one. We then requirgition Y to bequestion independerite., to not depend on the
that that second computer be able to directly pose b'nar}‘)recise question encoded jn only on the answer compo-

questions "f‘bOUt the f!rst CompUter predmnc:yh {Ya), nent. Intuitively, restricting ourselves to these kinds of intel-
W't.hOUt relying on any intervening tran;latlonal .computer ligibility functions means we are only requiring that tlabel
o interpret the components of concerning that first com- of a partition element predicted by one physical computer be

puter as a predictior{Note that nothing is being said about . }
whether such a question can be correehsweredby the @rectly readaple by Fhe Othef computer, n9t that the full par
tition element including the first computer’s question be di-

second computer, simply whether it can pesedto that . o .
computen. So we wish to be able to ask if the first comput- rectly readab[e. G."’.GFT the regtrlctlon to such question-
er's output is one particular value, whether it is another parjndependent 'nte"'%'b'“ty 2funct|ons, we say th_at two
ticular value, whether it is one of a certain set of values, etcPhysical Co.mp“ter% andc .a'remutually intelligibleif the
output partition ofC~ is intelligible to C* and vice versa.

Intuitively, this means that the s&for the second computer - .
Y & P Formally speaking, to make sure that the range of an in-

must contain binary functions of(-) of the first computer. telliibility functi ich ith that of th
Finally, we also require that the second computer be sim;t€!gIbiiity function matches up wi at orthe answer com-

larly intelligible to the first one ponent of an element of an output partition, often we must
These two requirements are how we impose the intuitive®nsider the  full prediction ~ partition,  Y,(0)

requirement that both computers be “readily intelligible” as ?.(A_(Yqéﬂ)),Ya(.ﬂ)),h rafther tranfju_sya(ﬁ).f For kexample,
predictions concerning reality; they must be readily intelli- tNiS iS the case in the formal definitions of weak and strong

gible and checkablto each otherMore precisely, define an Predictability(see the Appendix For pedagogical simplicity,

_ . . - - . though, we will often just refer to the “computer’s answer”
intelligibility function of any U-partition 7 to be a binary- or the “computer’s prediction” rather than explicitly state

whether we meaiY,. As always, such formal concerns are
4 ) ) o ) dealt with in full in the Appendix.

More prosaically, to motivate intelligibility we can simply note Finally, our unpredictability results will rely on our two
that we wish our computer to be flexible enough that there are n hysical computers being distinct from one another. They
restrictions on the possible questions one can pose to it. In particy, ¢ ot pe so intertwined that how we can initialize one of
lar, we wish to be able to pose tc_) a compu@‘r any predu_:tlon them is determined by how we initialize the other. More
question we can formulate. In particular, this means we wish to b?ormally just as we require that all input values {x} are

able to pose t€?! any questions concerning well-defined aspects of - . - .
the future state o€2. Now consider having? be a conventional physically realizable states of a single physical computer, so

computer based on an underlying physical system. Then we want t@)” pairs Qf the two computer’s inputs \{alues must be physi-
be able to predicC?s output at timer as Y2(u,). Therefore in  cally realizable states of the two physical computers. When

addition to any other questions we might want to be able to pose IS iS the case we say that the computerspaiiewise (input)

it, we want to be able to pose ©! questions involving the value distinguishableWhen this is the case for each pair of a set of
Y2(u,) (e.g., is that value equal to somg ? To SOmew, or w,? computers, we say that the set is pairwise-distinguishable,
To thatw, or some othew,? Etc). We wantC! to “understand”  and when it is possible to have any joint combination of the
y? sufficiently well to be able to pose binary-valued questions coninput values of all members of the set we say we hiae
cerning it. This is equivalent to requiring intelligibility. distinguishabilityfor that set.
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C. Predictable computation and certainly seems “natural.” Hence its inclusion in our
definition. See the discussion leading up to Definition 4 in

We can now formalize the concept of a physical comput ' ) : . .
P Py P the Appendix for more discussion of this point.

er's “making a correct prediction” concerning another com-

puter’s future state. We say thatUxpartition  is weakly
predictableto C if two conditions hold. First,m must be
intelligible to C. Second, for every intelligibility function A. The impossibility of an assuredly correct prediction

concerningm, f, Ix e {x} thatweakly induces,fi.e., a value Even if we can pose all the questions in some set to a
x such thatX(1) =x forcesC’s prediction to equaf(i). We  computer, that says nothing about whether by appropriate
will say a computeC’ with outputY’(-) is weakly predict-  choice of input that computer can always be assured of cor-
able to another comput&, and writeC>C’, if the answer rectly answering any question from that set. In fact, it turns
partition of C’ is weakly predictable taC. If we just say out that even if we restrict attention to question-independent
“predictable” it will be assumed that we mean weak predict- intelligibility sets, no physical computer can be assuredly
ability. correct in its predictions concerning the future.

See the variants of Example 2 in the Appendix for illus- Whereas the impossibility expressed by Theorem 1 fol-
trations of weakly predictable sets of computers. These denfows from cardinality arguments and the power set nature of
onstrate, among other things, that the™relation need not  intelligibility sets, this impossibility of an assuredly correct
be transitive. In fact, even if som&! could predictC?’s prediction follows from the presence of the negation operator
input simultaneously with predicting€?s answer, it still  in (question-independenintelligibility sets. As an example
would not follow thatC* can predict somer just becaus€?  of the logic underlying the proof, consider a pair of comput-
can. This is becaus€! has no ability to set its input to €rs predicting the future as in Example 1. Have both of the
ensure thak? is one of the values involved i6%'s predict- computers have answer subsections that are binary, and have
ing 7. (Strong predictability, introduced below, rectifies this. initialization time equal 0 and question time eqdalHave

This definition of predictable is very broad. It does notone of the two computers predict the other’s tifi@utput
require that there be a sense in which the information inpubit and then halt and freeze its output, all by some time
to C is interpretable as a description of the external universe<T, whereas that other computer predicts the negation of
(This freedom is what allows us to avoid formalizing the the first one’s timeT output bit just before it too halts. Since
concept of whether some input does or does not “correcthpoth computers’ output calculations must halthyhey will
describe” the external universdndeed, we do not even re- contradict each other when the prediction timearrives.
quire thatY,(0)=f. Even if the computer gets confused Therefore they cannot both be correct in their predictions.
about what question it is answering, we give it credit if it ~ This kind of reasoning can be extended to apply to any
comes up with the correct answer to our question. In addipair of physical computers, not just ones that work as in
tion, consider some intelligibility functiohand associated =~ Example 1. For example, no “halting and freezing” is re-
In the definition of predictability we allow the possibility of quired in general(Indeed, in practiceC cannot guarantee
two O’s that are both consistent with thatand that both that its output will be frozen with a particular output value
obey Y,(0)=f(0), but that nonetheless have different that does not change after some timesince it is always
Y,(0). Accordingly, lack of predictability implies merely Possible that an outside system comes in and pertGrps
that for somef a correct answer cannot be guaranteed, ratheEven the times O7, andT are superfluous. This is formally
than that a wrong answer is assured. stated in the following theorem.

Furthermore, while motivated by the task of predicting Theorem 2 Consider any pair of distinguishable physical

the fqture, the definition of wgak predlctabmty.presentedcomputers{ci: i=1,2\. It is not possible that botfs!>C?
here is more general, concerning any computation that Ca%’ldCl<C2

be cast in terms of inputs, questions about the universe, an

associated answers. For example, no times like, Gr T

occur in the definition of “predictable” or in any of the terms It should be emphasized that Theorem 2 holds no matter

going into that definition. Moreover, even when there ishow large and powerful our computers are; it even holds if

some temporal ordering that relates the inputs, the outputshe “physical system underlying” one or both of our com-

and the prediction involved in the computation, we need noputers is the whole universe. It also holds if inst&fdis the

haveT>7>0 as in Example 1. We could just as easily haverest of the physical universe external@. As a particular

T<7<0 or evenT<0< . So the results presented below instance of this latter case, the theorem holds evét iand

will establish the unpredictabilitgf the pasts well as of the  C? are physically isolated from each other for & 0. (Re-

future. They also can be viewed as establishing the fallibilitysults similar to Theorem 2 that rely on physical coupling

of any observation apparatus and of any control apparatubetween the computers are presentefi3s].)

These points will be returned to below. Rather than viewing it as imposing limits on computers,
Finally, it is important to realize that the requirement of Theorem 2 can instead be viewed as imposing limits on the

intelligibility can be removed from the definition of predict- computational capabilities of the universe as a whole. From

ability, and many of the results presented below will still this perspective that theorem establishes that the universe

hold (e.g., Theorem 2 will still hold That requirement can cannot support parallel computation in which all the nodes

be helpful in extensions of this paper’s analysis, howeverare sufficiently powerful to correctly predict each other’s be-

Il. THE UNPREDICTABILITY OF THE FUTURE
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havior. In addition, it is possible to generalize this paper’s Note that there is no requirement that the initialization
formalism to stochastic universes and/or computers. In thaime, guestion time, and/or output time of the compufer
extension Theorem 2 takes the form of saying it is impospartitions equal OT, andr, respectively, the values they have
sible for the probability of correct prediction for two com- for C. All that is required is that thi€ be a copy ofC. In
puters to both equal 1. An open question is what the highessarticular the possibility is allowed th&tis a temporal trans-
& Is such that two computers can simultaneously have it ation of C, either forward or backward in time.
their probapilit_y of correct predictior{See the discussion in In addition, as mentioned previously, the result also holds
the Appendix just before Lemma)1. when the initialization time is 0 and the output time is some
7>0, but the question tim&< 7. In other words, the com-
puter can run an arbitrarily long timgast Tand still must
Let C be a computer supposedly capable of correctly premake mistakes. Perhaps more surprisingly, the result still
dicting the future of any systeif appropriate information holds if not only isT<7, but in additionT<<0. In this case
concerning the initial state @ is provided toC, as in Ex-  the result denies the possibility of assuredly correct “predic-
ample 1 above. Assume th&tis not so powerful that the tion” of what occurred in the time preceding initialization.
universe is incapable of supporting a copy®ih addition to  Intuitively speaking, memory is just as fallible as predicting
the original.(This is certainly true of ang conceivably built  the future. This should not be surprising. After all, no tem-
by humans—see the formal definition of a copy of a physicaporally asymmetric law like the second law arises in our
computer in Definition 3 in the AppendixHaveShbe such a analysis, so all the resultsustbe time symmetric. In fact,
copy of C. We assume that for any pair 60 input values the temporally(a)symmetric nature of the laws of the uni-
for C, there is at least one world line of the universe in whichverse are irrelevant to Theorem 2—that theorem treats the
C’s input is one of those values and the other value constientire universe’s world line as a single entity.
tutes the input ofC’'s copy (i.e., we have input distinguish- In opposition to this formal proof of the necessary falli-
ability). bility of retrodiction, one is tempted to argue that no contra-
Applying Theorem 1 to our two computers, we see thatdiction results if | ask two computers to record each others’
there is a finite intelligibility set that is not intelligible tG, past states, only with one of them negatealtry to follow
i.e., there are questions concerningSithat cannot even be along with the proof of Theorem)2So the claim that Theo-
posed taC. (More formally, there is either such a set foror ~ rem 2 still holds forT<0 cannot be true, it would appear,
for its copy S) In addition, by Theorem 2, there is a finite and infallible retrodiction is allowed. To resolve the conflict
question-independefand therefore potentially poseaple-  between this intuitive argument and the explicitly
telligibility set concerningS that is not predictable bZ. In  T-independent nature of the proof of Theorem 2, note that
other words, there must be a question-independent intelligiTheorem 2 only says that there $smerecording at which
bility function concerningSthat C cannot predict unerringly, the computer must fail. The set of all such retrodictions en-
no matter what the input t@. compasses many that are quite complicated. In particular, the
The binary partition ovetJ; induced by this unpredict- liar paradox at the heart of Theorem 2 will arise when the
able intelligibility function constitutes a question concerningrecordings concern the dynamic pre-images of those future
the time T state ofS. In addition every one of the set of states that establish the fallibility of prediction the future.
potential inputs toC corresponds to a subset bf,, and To illustrate this in more detail, first note that if two com-
therefore corresponds to a subset of the possible stat@s of puters are physically isolated from each other for all time,
“input section” at time 0.[In Example 1,X(-) is set up so there is no way each can reliably record the others’ past state.
that every element ifix} corresponds to one and only one S0 our two putative retrodicting computers must be physi-
state ofC’s input section at time 0.Similarly, every output cally coupled, and therefore must be open systems. Now
of C corresponds to a subset 0f. and therefore a subset of consider a conventional digital version of such a compGter
the possible states @'s “output section” at timer. Accord- ~ Whose output partition elements are labeled by ther
ingly, our result means that there is no inputGaat time 0  states of its output bits. So each possible outpu€a$ the
that will result in C's output at timer having the correct set ofall possiblestates of the entire universe that are con-
answer to our question concerning the tifetate ofS. For  sistent with some particuldr= 7 pattern onC's output bits.
0<7<T, this constitutes a formal proof that no computerCall such a set, of all possible states consistent with the
can predict the future faster than it occu(®@r more pre- pattern onC's output bits at timer, “aligned” with that
cisely, that the universe cannot support more than one copgattern/time pair. In general, sin€is open, a set of states
of such a computer. that are aligned with an output pattern ©6 at time 7 will
This means, in essence, that Laplace was wrong: even ifot dynamically map to a set that is aligned with those bits at
the universe were a giant clock, he would not have been ablan earlier timel <0. (Instead, generically, the temporal pro-
to reliably predict the universe’s future state before it oc-jection of those states back in time will be consistent with
curred. Viewed differently, Theorem 2 means that regardlesgultiple output patterns oveg at that earlier time, with each
of noise levels and the dimensions and other characteristicgich pattern accompanied by only a proper subset of all pos-
of the underlying attractors of the physical dynamics of vari-sible associated states of the external univgrdgethe lan-
ous systems, there cannot be a time-series prediction algguage of Example 1, whil&"(U,) is defined purely in
rithm [9] that is always correct in its prediction of the future terms of thet= 7 state ofC's output bits, this need not be the
state of such systems. case forG"” (Uyy).

B. Implications of Theorem 2

016128-8



COMPUTATIONAL CAPABILITIES OF PHYSICAL SYSTEMS PHYSICAL REVIEW E65 016128

So to induce the liar paradox we pose $oa question In contrast to the quantum mechanics case, however, in the
concerningt=T that does not concern some set of statephysical computation version of the uncertainty principle an
aligned withC's output bits at that time, i.e., is not answered “intelligent observational system” is given a formal defini-
by the pattern on those bits at that time. Rather the questiofion (as a physical computerSee also the discussion in Sec.
we pose concerns the pre-imadeser U) of the individual IV A.
t=r U-space partition elements that ind€% t=r outputs. ~_ There is nothing in the math that forc€sto play a “pas-

The same is true for the computéis retrodiction concern- Sive observational role” in the coupling wits. So we can

ing S It is these kinds of questions that establish the fallibil-luSt as well view Theorem 2 as establishing the impossibility
ity of retrodiction. of an apparatus capable of ensuring that there is no discrep-

While these results concerning both prediction and retrodg?cg bre]tweein ?‘t‘_’a'uf In its tagfwfr Seftior(l: éz&d tantﬁsfom-
iction hold if C and S are isolated from one another for all :°¢ charactenistic ol a systemexiernal tot.. Ifote tha

t>0, they also hold ifC and S are coupled at such times. while weak predictability does not require thatfixes the

-~ value ofy, independent of the initial state & nor does it
Inde_ed, they hold no matter what the form of such .Coummgforbid x to fix y,; it only requires thay , correctly answers
So, in particular, we can have the coupling consistCsf

“ob S & Inf his is th | the associated question concern@gAccordingly, there is
observing” some aspect o In fact, this is the natural way -, q,ch thing as a general-purpose controller that works per-
to try to do retrodiction. Accordingly, the impossibility of fectly, in all situations.

unerring_retrodiction implies the impossibility of unerring  These impossibility results hold even if one tries to have

observation. the input to the computer explicitly contain the correct value
As a detailed example, consider a conventional observapf the prediction or observatiofiNote that since the universe

tion experiment, where what variable $is observed at time  js single-valued and deterministic, such a value must éxist.

7is determined by characteristics of the experimental appampossibility also obtains if the input is stochastic, since it
ratus at that time. In other words, it is determined by certairholds for each input value individually.

characteristics ofi( ), i.e., by certain characteristics &f

i.e., by wherel is in a particular partition ovel). Each [ll. THE MATHEMATICAL STRUCTURE RELATING
element in that partition corresponds to a different variable to PHYSICAL COMPUTERS

be observed, i.e., to a different question. So in such conven- . . ) )
tional observation, there is an implicit question-valued parti- _ There is a rich mathematical structure governing the pos-

tion of U. The “observation” consists of providing an an- sible predictat_)ility.relationships among sets of physical com-
tion of ¢ .some associated question. In other words “Eu.terg e;pemally !f one relaxes the pres'umptlon that they are
. : T ' _pairwise input-distinguishable. This section presents some of
conventional observation the choice of what to observe, tof
X : : at structure.
gether with the resultant observation, constitutes an outpu
partition. The input partition initializing the experiment then
is a way of forcing(a 0 which gives an output partition with
the desired question, hopefully also having the correct asso-
ciated answer(Note that in this interpretation of a physical ~Theorem 2 directly addresses predictability relations
computer as an observation device, its input will in generapvithin pairwise-distinguishable sets of multiple computers.
not uniquely fix its output answer, unlike the case with pre-However, one can also use it to derive results for the predict-
diction discussed in Example)1. ability relationships within other types of sets of computers.
So observation is simply an instance of physical compuFor example, consider a set afphysical computer§C'}
tation. As a result, Theorem 2 establishes the impossibility opuch thatC*>C?>--->C">C*. If that set is only pairwise
a deviceC that can, infallibly, take any specification of some distinguishable, we can ha@"'>C?>--->C" but still not
characteristic of the universe as input, and then observe tHeave C*>C". (See Example 2in the Appendix So it
value of that characteristic. This impossibility holds indepen-would seem that Theorem 2 does not preclude ha@fig
dent of considerations of light-cones and the like, and in fact>C?, i.e., does not preclude predictability cycles. It turns
holds just as well in a universe with= as it does in ours. out, though, that such cycles are impossible if one considers
(Alternatively, the time at which the characteristic is to besets that are more than just pairwise distinguishable. An ex-
observed can be specified in the computer’s input, and ther@mple is the following corollary of Theorem 2.
fore can be far enough into the future so that the light-cone . . o
emanating from the £;etting of that input can intersgect with ICoroIIar)f/ 2 Ithls notIpOSS|bIe o haive(aullr)]/) ﬂ's“”lg“'srz"
that of the characteristic being obseryelh all this, Theo- able setno nlp ysical computerC'} such thatC™>C
rem 2 establishes that any putative general-purpose observa- '~ = C
tion apparatus must, for some system to be observed, make a What are the general conditions under which two comput-
mistake in its claimed observation of that system. ers can be predictable to one another? By Theorem 2 we
This unobservability constitutes a sort of non-quantum-know they are not if they are input-distinguishable. What
mechanical “uncertainly principle.” Just like the Copen- about if they are one and the same? No physical computer is
hagen version of the quantum mechanics uncertainty prininput-distinguishable from itself, so Theorem 2 does not ap-
ciple, the physical computation uncertainty principle reliesply to this issue. However, it still turns out that Theorem 2’s
on having an “intelligent” system perform the observation. implication holds.

A. The graphical structure over a set of computers
induced by weak predictability
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Theorem 3No physical computer is predictable to itself. ~ As an example of this, say we have three pairwise distin-
guishable computer€*,C?,C3, whereC? always answers
with a bit [i.e., there does not exigf; such thatA(yg) ¢ B].

e wantC?s output to “correct” C's predictions, and we

Intuitively, this result follows from the fact that a com-
puter cannot make as its prediction the logical inverse of it
prediction. An important corollary of this result is that no T E :
output partition, considered in isolation of any input parti- gfr?cgfrgltoszaﬁéqobssiﬁzgﬁilcfkl)?g?orgnghenpﬁt)ttir:g:"c))»ut
tion, is predictable to a physical computer that has that out: ' 1. grole ot~ 1 he .
put partition. Combining Theorem 3 and Corollary 2 andthat d‘;e to Theorem 2, " is omn|SC|_ent, 'F IS not pOS;Ib|e
identifying the predictability relationship with an edge in ath"’ltC glvtvk;ays corretctly outpgésaa bit S?y'nqr‘k"\.’h?ﬂ@f[ f q
graph, we see that fully distinguishable sets of physical Com?nsw?lr IS g ;:horreg r_esponsc Sl,lqueg .'Orj['h AIS IS s; €
puters constitutéunions of directed acyclic graphs. The al- ormally (and then e“"e.)d";‘ig orofiary > In the Appen 1'X'
lowed graphical structure of other kinds of sets.g This result even holds Y is only intelligible to C-,

pairwise-distinguishable oness not well understood at without necessarily be'.”g predictable to It .
present. Corollary 3 can be viewed as a restriction on the efficacy

of any error correction scheme in the presence istin-
guishablé omniscient computer. There are other restrictions
that hold even in the absence of such a third computer. An
example arises if we consider two distinguishable mutually
When considering sets of more than two computers, it isntelligible physical computer<C! and C?, where both
important to realize that while it is symmetric, the input- A(yg) CB andA(y2) CBY yge{ya} andy; e {y3}. For such
distinguishability relation need not be transitive. Accord-computers, it turns out that Theorem 2 means that it is im-
ingly, separate pairwise distinguishable sets of computergossible forC* andC? to be “antipredictable” to each other,
may partially “overlap” one another. Similarly, stipulating in the sense that for each of them, the prediction they make
the values of the inputs of any two computers in a pairwiseconcerning the state of the other can always be made to be
distinguishable set may force some of the other computers iwrong by appropriate choice of input. This is proverCas-

B. God computers, omniscience,
and variants of error correction

that set to have a particular input value. ollary 4 in the Appendix.
Corollary 2 does not apply to a pairwise-distinguishable
set. To analyze such sets, first definga computetto be C. Physical computation analogs of Turing machines

any physical computer in a set of computers such that all .
other physical computers in that set are predictable to the 1N€re are several ways that one can relate the mathemati-
god computer. By Theorem 2, no pairwise-distinguishablecal structure of physical computation to that of conventional
set of computers can contain more than one god computef®MpPuter science. Here we sketch the salient concepts for
There is at most one computer in any pairwise distinguishS°Me such relations between physical computation and the
able set that can correctly predict the future of all other memMathematical structure governing Turing machiGest’s).
bers of that set, and more generally at most one that can A TM is a device that takes in an input string on an input
accurately predict the past of, observe, and/or control an{2P€: then based on it produces a sequence of output strings,
system in that set. either “halting” at some time with a final output string
Even a god computer in a pairwise-distinguishable sefwhen an internal “halt” state is entergdor never halting.

may not be able to correctly predict all other computers in it @n alternative, the fact that the halt state has or has not
setsimultaneouslyThe input value it needs to adopt to cor- P€€N entered by any time can be reflected in a special asso-

rectly predict someC? may preclude it from correctly pre- ciated pattern in the output string, in which case fch.e sequence
dicting someC? and vice versa. One way to analyze this of. output strings can always be taken to be infinite. As ex-
issue is to consider a composite partiti6fi<3 defined by the  Plicated above, in the real world inputs atgequences of

Output partitions OfC2 and C3_ We can then investigate OUtpUtS are elements of partitionslaf So in one translation
whether and when our god computer can weakly predict th€f TM’s to physical computers, strings on tapes are replaced
composite output partition. To that end, define a compdfer With elements of the partitions(-) andY(-). One way of
in a set of pairwise-distinguishable computggs,C?,...} to  doing this is to havelx; be the set of all stringgy,} then
be omniscientif the composite output partitioly>*3*" is  consists of a single partitiog that divides upU the exact
predictable taC?. same way as the input partition does, with the set of labels
Now, in general, one might presume that two nongodA(q) being the set of all allowed infinite sequences of
computers in a pairwise-distinguishable set could have thetrings. For anyll, X(0) is an input string, and/ ,(Q) is the
property that, while individually they cannot predict every- associated sequence of strings generated by running the TM
thing, considered jointly they would constitute a god com-on that input string. Havingr'(() specify both the initial
puter, if only they could work cooperatively. An example of string and the ensuing sequence of strings is analogous to the
such cooperativity would be having one of the computersonventional way of implementing reversible computation
predict when the other one’s prediction is wrong. It turns out[2—6)].
though, that under some circumstances the mere presence of Rather than through a set of internal states, read/write
some other third computer in that pairwise-distinguishableoperations, state-transition rules, etc., in this approach the
set may make such error correction impossible, if that othetransformation of inputs to outputs in a physical computer is
computer is omniscient. achieved simply through the definition of the pair of an input
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partition and output partition. For such a TM that declares inanother’s, by being observed by that other comp(dgeper-

its output string whether it has halted, the physical computahaps even by setting that other computer’s input more di-

tion analog of whether a computation will ever halt is simply rectly). It is when such relationships hold that many physical

whether{l is in some special subset Hf}. computation analogs of members of the Chomsky hierarchy,
In contrast to this approach, in the real woMq-) and and particularly universal .Turin-g machines, arise.

Y(-) usually divide up0 differently. In this they are analo- To capture such a relationship, we say that a compiter

gous to TM's with multiple tapes rather than conventional'> strongly pr.edlétableto Cl_ (orlequ;valently _thatCl Ca?
single-tape TM’s. One way to generalize this, motivated bystro?g'lly pred|ctd. ) ancri] Vlvdmg.c >§ (or qu|vaI|?anI))1C
the definition of predictability, is to havgx} as before, but jlcgl tw%c?n tions | ct) ”'. .gﬁ_ttcfmu?t e inte 'g'.mgzto
require of eaclye{y,} thatA(q) is the set of all possible f ,ndefccrm v, rorzevztlar)zllln illglthl |tytrurr11c Ilo?ngonCiLm }r
sequences of strings. Differegte {y,} are then interpreted ,fa 5 °The enx h E{ ; a? 0 %y hucg t;lp?
as equivalent to questions “what sequence of output stringg Xl ). That 1's;t ere exists a va 99 @ such thatX*(0)
ensures from some input strirgg” for different s. (In this % fgrtiessz(u) to equal(A(f),f(0)) and reflects the fact
context the question-independent nature of weak predictabitnat X (”)j)f [or,2 viewed alternatively, forces it to be the
ity is loosely analogous to a TM’s being able to overwrite the®aS€ tan (@) =x7]. . )

“question” originally posed on its tape when producing its T €~ can strongly predicC?, then for anyx "zmd asso-
“answer” on that tape. We will adopt this identification ciated answer y,—for any computation C= might
from now on, taking the physical computation analogue of aindertake—there is an input to C* that is uniquely asso-
TM to be an input partition together with the answer com-Ciated with x* and that cause€' to output (any desired
ponent of an output partition. guestion-independent intelligibility function Jothe associ-

This identification motivates several analogues of theatedy?. By ensuring thak?(0)=x?, with x* we ensure that
Halting theorem. Since whether a particular physical comC" is outputting(the appropriate intelligibility function of
puter C2 “halts” or not can be translated into whether its C*s conclusion for the desired premisé, Intuitively, there
output is in a particular region, the question of whetfidr  is some invertible “translating” map that taked®'s input
halts is a particular(question-independentintelligibility ~ and “encodes” it inC"s input, in such a way tha€' can
function of C2. Correctly answering the question of whether “emulate” C? running onC?'s input, and thereby produce
C2 halts means predicting that intelligibility function 2.  C?'s associated output. In this wa* can emulat€?, much
In the context of physical computation it is natural to like universal Turing machines can emulate other Turing ma-
broaden the issue to concern all intelligibility functions of chines.(See the definition of a universal physical computer
C2. Accordingly, in this analog of the claim resolved for below)

TM's (in the negativieby the Halting theorem, one asks ifit  Strong predictability of a computer implies weak predict-
is possible to construct a physical Compl_ﬁﬁ-rthat can pre- ability of that computer(Unlike with weak predictability,
dict any computelC?. To answer this, simply consider the there is no such thing as strong predictability of a partition.
case wher€? is a copy ofC*. By applying Theorems 2 and SO results concerning weak predictability that are not predi-
3 to this case, one sees that the answer is no, in agreemested on input distinguishabilitywhich is impossible for
with the Halting theorem(Even if one strengthens the notion Strong predictability still hold if they are changed by replac-
of predictability, as in Sec. llID, the answer is still no, by ing weak predictability with strong predictability. This in-
Theorem 6 presented below. See also Corollary 4 in the Apcludes in particular Theorem 3 and Corollary(RBut not
pendix) Theorem 2.

There exist a number of alternative physical computer Weak predictability does not imply strong predictability,
analogs of the Halting problem. Though not pursued ahowever. Moreover, the mathematics for sets of physical
length here, it is worth briefly presenting one such alternacomputers, some of which are strongly predictable to each
tive. This alternative is motivated by arguing that, in the realother (and therefore not distinguishableliffers in some re-
world, one is not interested so much in whether the compuSPects from that when all the computers are distinguishable
tation will ever “halt,” but rather whether the associated out- (the usual context for investigations of weak predictabjility
put (say Conventiona”y “read” at some prespeciﬁed tm An example is the fO”OWing result, which shows that strong
“correct.” If we take correct to be relative to a particular predictability always is transitive, unlike weak predictability.

question, this motivates the following alternative analog of Theorem 5 Consider three physical computers

the Halting theorem: Given any set of physical computer C!,c2,C% and a partitions, where bothC® and  are
{C"}, there is no member of that s€tsuch that for every inteiligii)le to Cl ’

Cc’ e{Ci}, (i) C’ is intelligible to C; and(ii) for all questions (i) Cl>C2>n=Cl>1

q" e{yq}, there is arx value which induce€ to answer with (i) Cl>C?>C3=ClsCl,
a 1 if and only if the answer o€’ to q’ is correct. See
Theorem 4in the Appendix. Strong predictability also obeys the following result which is

analogous to both Theorems 2 and 3.

D. Strong predictability Theorem 6 Consider any pair ofnot necessarily distin-

At the other end of the spectrum from distinguishableguishablé physical computer§C':i=1,2. It is not possible
computers is the case where one computer’s input can fithat bothC'>C? andC'<C?2.
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Many of the conditions in the preceding results can bey - (j sych thatX(0) e 2. We write this as/(E). Then if

weakened and the associated conclusions still f@igl., we 1 . . .
can weaken the restriction that intelligibility functions havec>77 [so C (m) {s_nonempty, the prediction comlpIeX|ty
of 7 for C is the minimal such length over the @t ().

image spaceCB.) These weakened versions are usually i . ;
more obscure, though, which is why they are not presented/® Write that complexity ag(|C). (Note that the predic-

here. tion complexity is defined in terms of weak predictability
ATM T can emulate a TMI2 if for any input for T2, T* rather than. strong; strong predictability will arise in our
produces the same output Bwhen given an appropriately boundsonit. _ o N
modified version of that inputTypically, the “modification” We are primarily interested in prediction complexities of
involves prepending an encoding ®f to that input) The  binary partitions, in particular of the binary partitions in-
analogous concept for a physical computer is strong predicduced by the separate single elements of multielement parti-
ability; one physical computer can “emulate” anoth@ot  tions.[The binary partition induced by some particular ele-
distinguishable, in genepatomputer if it can strongly pre- ment pe 7' is just the binary-valued function oéi of
dict that other one. Intuitively, the two componentsTdfs ~ whether or notr’ (1) = p.] To see what our definitions mean

emulatingTz, inVOlVing TZ,S input and its Computational be- for such a partition’ say you are given some Géto (i.e',
havior, respectively, correspond to the two components O{/ou are given a binary partition dd). Suppose further that

the requirement concerning values that occur in the defi- you wish to know whether the universe isdnand you have

nition of strong predictability. The requirement that thk N
value forces the answer of to equal that of any intelligi- some compute€ to use to address this iss(ie., to evaluate

bility function of C? is analogous to encodinghe computa- all four intelligibility_ functions of the partition _(r,U\q).
tional behavior of the TM T2 in a string provided to the Then loosely speaking, the prediction complexitycofvith
emulating TM, T, Requiring as well that the value' en- ~ respect taC is the minimal amount of Shannon information
sures thaiX2(01) =x2 is analogous to also including an “ap- that must be.imposed i@'s inputs in order to get a minimal
propriately modified” version ofr?'s input in the string pro- St of such inputs that ensure th@is output correctly ad-
vided toT?. (Note that any mapping taking e {x?} to anx* dresses that issue. In particularpifcorresponds to a poten-
that in turn induces that starting is invertible, by construc- tial future state of some systeSexternal toC, thenC(c|C)

tion.) This motivates the following definition of the analog of 1S & measure of how difficult it is fo€ to predict that future
a universal TM. state ofS> Loosely speaking, the more sensitively that future

state depends on current conditions, the more complex it is.
Definition @ A universalphysical computer for a set of  In many situations it will be most natural to choose the
physical computers is a member of that set that can stronglyolume measure implicitly defining'(-) to be uniform over
predict all other members of that set. accessible phase space volume, so that the lengfhisthe
Note that rather than reproduce the output of a computer it eéqt?gg dpnhcﬁsﬂ,%atlhinégspg gfo:':zr;asat;malrlgu?vz lcl(;r:nin:sieBalét define
is strongly predicting, a universal physical computer P9 the measure so that the \}olume of egch element of the asso-
duces the value of an intelligibility function applied to that

output. This allows the computers in our set to have diﬁerenf'ated{x} is a different positive real number. In this case, the

output spaces from the universal physical computer. How—engths of the elements ¢k} provides us with an arbitrary

ever, it contrasts with the situation with conventional TM’s, Ord‘l?r:g]?oﬁ\o/\(/avrir:hoesfar?:elr];(?lrl]ljzfrates the connection between
being a generalization of such TM’s. 9 P

lengths of regions& and lengths of strings in TM's.

E. Prediction complexity Example 3 In a conventional computgisee Example 1
above, we can define a “partial strings (sometimes called
- : " ) a “file” ) taking up the beginning of an input section of
algorithmic complexity of an output strirgis defined as the memory as the set of all “complete strings” taking up the

length of the smallest input string/ that when input toT oo . T .
. . __entire input section whose beginningsiswe can then iden

producess as output. To construct our physical computation he | h h il string in i
analog of this, we need to define the “length” of an input tify the input (to the computer as such a partial string in its

: I Y ) input section(Typically, there would be a special fixed-size
region of a phyS|ca'I.comput£ar. To.do this, first, g|\./e.n any“length of partial string” region even earlier, at the very
computerC and partition of U, define alweak) prediction  paginning of the input section, telling the computer how
input setas a minimal subset @'s x values needed fd€ to

weakly induce all intelligibility functions ofr. (The maxi-

m§1l1 suc_h se'_[ is all offx} of course, assu_m_|n93_> ) SEspecially for nonbinaryr, many other definitions of prediction

C () is defined as the set of all such prediction input Sets ., njexity besides this one can be motivated. For example, one

Intuitively, the prediction set ofC for #/C’ is a minimal  ¢qig reasonably define the complexity ofto be the sum of the

subset offx} that is needed b{ for w/C’ to be predictable  complexities of each binary partition induced by an elementrof

to C. i.e., one could define it a%,_,C({0ep,0 < p}|C). Another vari-
Next, to define the physical computation analog of theant, one that would differ from the one considered in the text even

length of a string, given a comput€; define theengthof a  for binary partitions, is mipc-1p[S«e,/(X)]. For reasons of

subsetE C{x} as the negative logarithm of the volume of all space, no such alternatives will be considered in this paper.

In computer science theory, given a universal Tiithe
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much of the complete string to read to get that partial stying.one varies over thé input to it. Similarly, the intelligibility
If we append certain bits teto get a new longer input partial function I3 takes on(both) B values as one varies over the
string, s’, the set of complete strings consistent wathis a  inputs to it.
proper subset of the set of complete strings consistentsvith  Using these definitions, we now bound how much more
Assuming our volume measumy is independent of the complex a partition can appear @ than toC? if C* can
contents of the “length of partial string” region, this means strongly prediciC?. Though somewhat forbidding in appear-
that/(s")=/(s). ance, intuitively, the bound simply reflects the complexity
This is in accord with the usual definition of the length of cost of “encoding”C? in C*'s input.
a string used in Turing machine theory. Indeed'itontains
n more bits than does, then there are 2times as many
complete strings consistent wistas there are consistent with
s’. Accordingly, if we take logarithms to have base 2,
/(s')=/(s)+n.
Say we want our computer to be able to predict whether (i) C(7|CY)—C(#|C?)<In[0(27)]—In[3]
lies in some sew. (To maintain the analogy with Turing

Theorem 7Given any partitionm and physical computers
C! andC? whereC's>C?> 1, we have the following:

1\—-1 2 422
machineso could delineate an “output partial string.” This +max{ng,xze[CZHZ),I%e{I%}}/[(C ) H(Cx512)]
could be done for example by delineating a particular value ) 5

g : —min 2crc21—zn? [X°].
of a prediction, perhaps even one in some other computer. (zCBx2e[C2]—(2)}

In the usual way, this corresponds to having the binary par-
tition {0 e o, U¢ o} be weakly predictable to our computer. Or alternatively, we have the following:
So the prediction complexity of that prediction is the length

of the shortest region of our input space that will weakly

induce that prediction(Note that since we require that all (i) C(|C!)—C(m|C?)<In[0o(27)]

four intelligibility functions of o be induced, more than one
input “partial string” is required for that induction, in gen-
eral)

+ min{ZgB,XZE[CZ]‘*(Z)J%E“%}}/[(Cl) “(cix313)]
—MiNzcp x2. [CZ]*(Z)}/[XZJ-

We now derive a bound on differences of the prediction
complexity of a partition with respect to two different uni-
versal computers. First, give@ together with some other
computerC’, we need to define strong prediction input set
of C for the triple of (C', a subseE’ of the input values of
C’, and a subset’, of the intelligibility functions forC’).
This is a minimal subset oC’s input values needed to
strongly induce every paiff’ e f’, x’ € E’). When there is
at least one such subset we will wri@& (C’,2’,f") for
the set of all such subsets.

The fact thaty, values(cf. the definition of the prediction
partition in the Appendixspecify the sef(y,) makes work-
ing with these definitions difficult. In particular, to relate
prediction complexity to properties of the associated univer
sal physical computer we must use a set of “identity” intel-
ligibility functions defined as follows.

As one varies, in both bounds in Theorem 7 how the
bound depends o8* and C? does not change. In addition,
those bounds are independentmofor all 7 sharing the same
cardinality. So, in particular, they are independent of the pre-
cise choice of partitionr so long as it is a binary partition
like those discussed in Example 3. In addition, intuitively
speaking, the termr[(C') ~*(C?,x?,12)] occurring in both
bounds is related to the cost of emulating the one computer
on the other. This illustrates how Theorem 7 is the physical
computation analog of the result in Turing machine theory
that the difference in algorithmic complexity of a fixed string
with respect to two separate Turing machine is bounded by
the complexity of “emulating” the one Turing machine on
the other, independent of the fixed string in question.

Consider the possibility that for the laws of physics in our
universe, there exist partition§(-) andY(-) that constitute
a universal physical comput&* for all other physical com-

Definition 12. (i) Given a spac&ZCB and a physical puters that exist in our universe. Then by Theorem 6, no
computer C=(X,Y), {|§} is the set of all question- other computer is similarly universal. Therefore there exists
independent intelligibility functions o€ where A(15)=2, a uniqgue prediction complexity measure that is applicable to
and where for alil such thatA(Y4(0))=2Z, I(Z:(G):Ya(a)' all physical computers in our universe, namely complexity
We also will need the following definition. with respect taC*. (This contrasts with the case of algorith-

(i) Given a spaceZCB and a physical computee  Mic information complexity, where there is an arbitrariness
=(X,Y), “C~(2)" is defined as thosexe{x} such that inthe choice of the universal TM usedt instead there is no
X(0)=x=A(Y,(0))CZ. universal physical computer in our universe, then every

physical computelC must fail at least once atstrongly
predicting some other physical computéMote that unlike

So, for example, ifZ=B, a pair (xX*e[C?]7(2), 17  the case with weak predictability considered in Theorem 2,
e{12}) is an input toC? and an intelligibility function of here we are not requiring that the universe be capable of
C?s output, respectively. That inpuf induces an associated having two distinguishable versions @f) This establishes
output questionqze{yg}, that takes or(both) B values as the following.
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Theorem 8 Either there cannot be a computer thatjust a point in a set, with no ancillary structure that could
strongly predicts all others that exist in our universe, or therémbue it with meaning.
is a unique universally applicable complexity measure in our This identification of all physically meaningful properties
universe. of the universell with the single associated input-question-
o ) _ _ _ answer triple of a computer has some quite reasonable quali-
Similar conclusions hold if one restricts attention to a setjes For example, the value of the input gives a restriction on

of (physically localizedl conventional physical computers o |hyitively this restriction is akin to a specification of the

(cf. Example }, whgre _the Iight.cones in the set are a.rrange.dphysical boundary conditions under which the answer to the
to allow the requisite information to reach the putative uni-

versal phvsical computer. S Iso the di on of r Iiti%uestion of the universe is calculated. Note that that input
bglg\?v physical computer. >ee aiso Ine discussion ot realili§p, ue not only fixes the universe’s answer though, but also

the very question being answered. So for major enough
changes to the input, in general there has to be a change in
IV. DISCUSSION that question being answered by the universe. This too is
reasonable; intuitively, the original question is no longer
o . ) meaningful given a large enough changdito
_None of the analysis in this paper requires that the pos- e this identification, the full mapping from arbitrary
sible states of the universe all be characterizable by a S'nglfﬁputs to the associated question/answer pairs provides all

zgtmzf Cc:)f;ec?:eePeﬁtii;ﬁg\:’%ﬁé &?Li;nztiﬁnﬁggsilfjlgii |51ossible pairs of boundary conditions and associated physi-
phy ' cal properties of the universe’s entire world line. In other

GeU is just an arbitrary temporally indexed collection of \y,qgs that mapping—the comput€r—constitutes the laws

events, with I|ttle_ to no d_|scern|ble .regularlty relating tho_seof the universe. So under this identification we do not need
events._ Brc_)ader_ung the lnte_rpretatlon furthe’r, whereas in Blaborate considerations of grammars, formulations of logic,
deterministic universe(t) uniquely sets alu(t’ #t), noth- the foundations of mathematical reasoning, etc. to express

ing in our analysis relies on haw'ng that or any other kind Ofthe laws of the universe. Indeed, since we express the laws
structure apply to each. Determinism itself is not needed. . ) i ) -
via a structure itself defined in terms bf (namelyC), the

In fact, U can be any kind of set whatsoever, even one whose -
individual elements cannot reasonably be viewed as “timeStatesU and the laws governing them form a self-contained
indexed collections of events,” regular or otherwise, or evertnit.
one whose elements are not vectors, and our results still To formalize this, we say that a paitJ(C) is a reality.
hold. One reality is acopyof another if their computers are copies
As mentioned in the Introduction, several authors haveyf each other. If two realities are copies, then their law-
speculated that the entire universe and its physical laws al’@’oviding Computers have identical re|ationships between
not some underlying structuigovernedby the conclusions  their inputs, the questions they associate with those inputs,
of a computer, but rather in some ser® a computer, anq the answers they provide to those questions. Accord-
without any extraneous “Emderlymg structure.” In light of ingly, we identify a particular set of “laws of the universe”
the breadth of the possiblé to which this paper’s analysis with an equivalence class of realities that are copies of one

applies, it is interesting to consider this issue when “cOm-pn ey even if the spacBisof those realities differSee the
puter” is interpreted to mean a physical computer. This US€efinition of “copy” in the Appendix)

of the mathematics of physical computation implicitly differs . o
from the analysis up to now in which is a time-ordered Say we are given a realil),C). We can calculate for

: -that sets{C'} of (perhaps nondistinguishableomputers
some subset of its degrees of freedom. In contrast,inesn  defined ovell the joint output partitiory**" is predict-
be completely arbitrary, and our partitions are allowed to@ble to C. Label that set of sety. C's answers give the
involve all of the degrees of freedom & not just some values of(associated intelligibility functions ¢fthe outputs
subset of them. More importantly, while we still identify a Of the members of any one of tho¢€'} € x taken all at
particular instantiation of the laws of the universe witfi,a once. Next, given somige U, there is some subsg({)C x
we do not identify what are intuitively viewed as the “physi- of {C'} that are weakly induced b{’s associated input,
cal properties” of that instantiation directly with that per ~ X(0). These, intuitively, are théC'} that are both predict-
se. Rather we collectively identify all of those physical able toC and are actually predicted I&yfor the G at hand. In
properties—the totality of what is observable to humans cona certain sense, i€ is the “laws” of the reality, then having
cerning the universe—as the triple Gf computational an- Y1*2*" for a particular{C'} € y be predictable taCis a
swer, to a particulathigh-dimensionalquestion, in response minimal condition for saying that the computers{i@'} are
to a particular input The precise such triple is the one that is “allowed by” or “consistent with” (U,C). Having X({) in-
induced by thafi in concert with theX(-) andY(-) of some  duce thaf{C'} for the 0 at hand is then a minimal condition
physical computer. So here a particules U, by itself, has  for saying that thg§C'} are “real,” and “exist” in that ( (cf.
no “physical meaning” whatsoever; it is the input-question- Theorem 8. [It is interesting to speculate on the similarity
answer triple that it induces, viA(-) and Y(-), that pro- between having multiple setsC'} e x(0) and the many
vides all such meaning. Without that associated trifiles  worlds interpretation of quantum mechanics.

A. In what sense might reality “be” a computer?
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Note that by definition of predictability, whether some things, this would allow us to define the complexity, to the
{C'} “exists” is a function of whetherC can correctly give ~computer constituting the very laws of the universe, of an-
{C'}’ s answerdor (i other than the single one at harifhis ~ swering a particular question. Another variant would be to
reliance on counterfactudl to ascribe existence to £C'}  exclude degenerate prediction, as discussed in the Appendix
reflects the fact that a singlg by itself, contains no infor- just before Definition 4.
mation. Even if(i is a collection of high-dimensional real Another example arises in response to the argument that
numbers(e.g., a collection of phase space positiprishas  rather than conveying physical meaning, the partitigresid
no meaning except in comparison to other such collectionsY are ultimately just arbitrary “interpretations” df, with no

As a particular example of all this, we can have the elefurther physical significance. According to this argument,
ments of{C'} be the entire sequence of predictions and/orany other interpretation, any other computer defined over the
observations that constitute the mind of some particular sciset of possibldi, can be viewed as just as legitimate. When
entist. Doing so, we see that a reality induces a set of sciertas in previous sections of this papan electronic worksta-
tists, each given by a differefi€'}. As another example, the tion constitutesl, this arbitrariness is not a problem. It is
human endeavour comprising the field of physics constitutegeasonable to say that the user of the workstation provides
a computer, with its input and output partitions delineated bythe interpretation ofi; it is (s)he who ultimately deems what
states of the min@) of one or more physicists. The goal of the inputs and outputs to that workstation “mean.” A differ-
the field is to have the computer comprised of those twQant user of the exact same workstation undergoing the exact
partitions be computationally equivalent tice., a copy of  same dynamics is free to interpret that workstations’s inputs
that of the embedding reality. The analysis of this paper prognqg outputs differently, and thereby constitute a different
vides some results concerning the possible relationships beomputerc. One might want less freedom of interpretation,
tween the field of physics and those laws governing our eMg,qgh, if rather than a workstation embedded in a universe
bedding reality. For example, by Theorem 2, if we presumeyng accompanied by an interpreting user in that universe, the
the}t the minds of physicists are predlcta}ble to the Iaw; Qf th%omputer under consideration is supposed to be the very
universe, then those laws are not predictable to physicists. |a\ys of that universe themselves. This issue can be especially

In addition to results concerning human endeavours, th@attlesome when we want to view those laws as unique
analysis of this paper also provides results concerning sets @ mehow. independent of any interpreting “user.”

mather:naucal laws governing universes. For example, for fi-  This objection is ultimately philosophical, amounting to a
nite o(U), it is often reasonable to have orealue for each  semantic disagreement over how to define whether two re-
0, and similarly oney value for eachu (that is the maximum  alities are “the same,” i.e., of how to define whether they
possible number of boti's andy's). Since there are %Y) have the same “laws of the universe.” The view expounded
above is in favor of a “weak” definition, and simply says
that a reality’s laws ar@ot embodied inQ, but rather inC.

abt\n alternative “strong” definition, overcoming the objec-
tions raised above, adds conditions to the weak definition.

binary-valued questions concernitly this means théusu-
ally vash majority of questions are not ify,}. So the “laws
of the universe” cannot pose most questions concerning th
universe(cf. Theorem L Furthermore, by Theorem 3, we S ; . .
know that there are questios(potentially not in{y,}) for These conditions inextricably coupleandC, via the rela-
which there is nox value that can ensure thafs answer tionship between thg guestion-answer pair€iand the as-
Correct|y g|ve$(0) There are questions Concerning the uni-SOCiated elements |U, and define two realities to “be the
verse that we can never force the laws of the universe t§ame” if they share that property. Formally, we say that
answer correctly. (U,C) is computationally equivalento a different reality

These results are particularly suggestive if we recall that(J’ c') if two conditions hold. First, the two realities must
observation is a form of physical computation. Inability to he copies of each other, so that their computers share the
pose all questions therefore implies a “coarse graining” oversame set-valued function from inputsto outputs ¥q.Ya)
the set of pOSSib|e observations. It is temptlng to try to relatqas in the weak def|n|t|dn Second' the two Computers must
this to the quantum'mechanical Uncertainty principle. Not%hare the same set-valued function from |nputs’:|’m re-
that this phySical Computation “uncertainty pl’inCiple" is dif- sponse to the associated questi0n7 i_e_, the same
ferent from the Theorem 2—-based one discussed in the te{ynction from the value ofX(0) to the value of
Note also that whereas a particul@rindices a unique an- =[Yq(0)](0)_6 (Note that use of this stronger definition in

swer, a particulak value andyq need not. This is suggestive ng way negates the properties involving setsxpounded at
of the indeterminacy of observation in quantum mechanics—the beginning of this section.

knowing the boundary conditions of the universe and the

observational question being posed to it need not uniquely——

fix the associated answeee also the discussion of proba- syqte that there is a lot of structure not captured in this definition.

bilistic partitions just before Lemma 1 in the Appendiix. As an example, two realities can be computationally equivalent
There are a number of stronger variants of all of this thakyen if they differ in their functions mappingX(Q)

are worth investigating. In particular, one could add otherﬁ[yq(g)](x—l(xl)), wherex; is the first element ofx} (so that

conditions to the definition of whethdiC'} “exists.” An for neither computer doeX (x;) vary as theli argument to

example would be to incorporate the notion @fstrongly  [Y,(-)] is varied. Such a difference between the two realities is

inducing intelligibility functions of the{C'}. Among other akin to a difference in their responses to counterfactual questions.
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Arelated way of responding to the objection is to consideron infinities of some sort in physically unrealizable systems
realities that do not contradict themselves, i.e., whose com(e.g., in[26] an infinite number of steps are needed to con-
puters are infalliblgsee the discussion in the Appendix just struct the physical system whose future state is not comput-
before Corollary 1L Requiring that a physical computer be ablg. In addition, they all assume one’s computing device is
infallible if we are to identify it as a universe certainly seemsno more powerful than a Turing machine. Also none of them
reasonable. Moreover, if the computers in two realities ar@are motivated by scenarios where the computation is sup-
both infallible, then they are copies of each other if and onlyposed to be a prediction of the future. Nor are they extend-
if they are computationally equivalent. So if we restrict at-able to allow arbitrary coupling between the computer and
tention to infallible computers, the issue of computationalthe external universe, a$or example in the processes of
equivalence between realities is reduced to the original issuebservation and control. There are other limitations that ap-
of whether the realities are copies, and there is no differencply to many of these previous results individually, while not
between the weak and strong definitions of whether two reapplying to each and every one of them. For examplg2&h
alities are “the same.” In addition, for infallibl&, if Cis it is crucial that we are computing an infinite precision real
also stable(see the Appendjx then the issue of wheth&  number rather than a “finite precision” quantity like an inte-
weakly predicts som€’ simplifies to whetheC' is intelli-  ger. As another example, many of these previous results ex-
gible to C. Note also that for the computers in infallible plicitly require chaotic dynamicse.g.,[8]). None of these
realities, we can simplify the definition of to be just a limitations apply to the analogous result of this paper. In-
mapping from{ to questiongthe associated answers being deed, the results of this paper even hold if the laws of phys-
set automatically For all these reasons, when trying to cap-ics are changed.
ture the human concept of what it means for two universes to

“be the same,” it seems reasonable to concentrate on equiva- C. Future work
lence classes of infallible realities that are copies of one an- : . S L
other Future work includes investigating the following issues.

(i) How are the results modified if one is concerned with
the probabilities of erroneous prediction rather than just
worst-case analysis of whether there can possibly be errone-

Any results concerning physical computation should, at aous prediction?
minimum, apply to the computer lying on a scientist’'s desk. (i) How must the definitions and associated results be
However, that computer is governed by the mathematics afmodified for analog computefso that one is concerned with
deterministic finite automata, not that of Turing machines. Inamounts of error rather than whether there is an grBren
particular, the impossibility results concerning Turing ma-if one is predicting the future state of a stochastic system, so
chines rely on infinite structures that do not exist in anylong as that prediction is falsifiable the analysis in this paper
computer on a scientist’s desk. applies.(See the discussion just before the definition of a

On the other hand, when one carefully analyzes actugbhysical computer.However, how should the analysis be
computers that perform calculations concerning the physicathanged if what one is trying to predict is a random variable?
world, as in this paper, one uncovers a mathematical strucAlternatively, what if(as in the classical real wopld has a
ture governing those computers that is replete with its owrdefinite value, but the output of the computer is a probability
impossibility results. While much of that structure parallelsdistribution? A preliminary analysis of this is presented just
Turing machine theory, much of it has no direct analog inbefore Lemma 1 in the Appendix. There it is proven that
that theory. For example, it has no need for structures likehere cannot be two computers both of which have a “degree
tapes, moveable heads, internal states, read and/or write caf weak predictability”(a measure quantifying the accuracy
pabilities, and the like, none of which have any obvious re-of a probability distribution outpyitequal to 1. The value of
lation to the laws of quantum mechanics and general relativthe strict upper bound on such a pair of degrees of weak
ity. predictability is currently unknown.

Nonetheless, there are a number of previous results in the (iii) Since by adopting the many-world interpretation we
literature that can be viewed as Turing machine analogs afan cast quantum mechanics as purely deterministic evolu-
Theorem 2. Many authors have shown how to construct. Turtion in Hilbert space, the presumption of determinism in this
ing machines out of physical systenisee, for example, paper does not a priori invalidate its applicability to quantum
[11,25, and references thergirBy the usual uncomputabil- systems. However, it is still worth asking whether there are
ity results, there are properties of such systems that cannot lz@y modifications to the definitions that would facilitate the
calculated on a physical Turing machine within a fixed allot-analysis for quantum systems, especially if we adopt the
ment of time(assuming each step in the calculation takes &Copenhagen interpretation. If there are such modifications,
fixed noninfinitesimal timg In addition, there have been a then how are the ensuing results different for quantum sys-
number of results explicitly showing how to construct physi-tems?(As an example of such a modification, one might
cal systems whose future state is noncomputable, withouwvant to allow sufficient time betweehand rin Example 1
going through the intermediate step of establishing computato not run into difficulties due to the Heisenberg uncertainty
tional universality[14,26]. principle)

There are several important respects in which Theorem 2 (iv) Find the exact point of failure—which according to
extends this previous work. All of these previous results relytheorems(1) and (2) must exist—of the intuitive argument

B. Relation of Theorem 2 to previous work
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“If the computer is simply a sufficiently large and fast  (ix) More speculatively, the close formal connection be-
Hamiltonian evolution approximator, then it can emulate anytween the results of this paper and those of computer science
finite classical nonchaotic system.” theory suggest that it may be possible to find physical ana-
(v) As mentioned just above, there is a large body of worklogs of most of the other results of computer science theory,
showing how to embed TM’s in physical systems. One topicand thereby construct a full-blown “physical computer sci-
for future work is following an analogous program in the ence theory.” In particular, it may be possible to build a
domain of physical computation, for example by investigat-hierarchy of physical computing power, in analogy to the
ing what physical systems support copies of any element ofhomsky hierarchy. In this way we could translate computer
various sets of physical computers. science theory into physics, and thereby render it physically
(vi) Exploiting the generality of our definitions, it may be meaningful.
possible to apply the analysis of this paper to the foundations \We might be able to do at least some of this even without

of mathematics. As an example, choose alsab that each  'elying on the DAG relationship among the physical comput-
ers in a particular set. As an example, we could consider a

ume tLrJ1 'r‘; atli bloo:<. E?t(i:hnbo?kr cc))(nsr:qsrtﬂsmof ahcr?llfc;‘non of system that can correctly predict the future state of the uni-
atheématical propositions, for exa Ough not NECes-_ \arse from any current state of the universe, before that fu-

Sa”'Y) expre_ssedA as strings over some_ﬁxed alp_ha_lbet. Thfﬁre state occurs. The behavior of such a system is perfectly
precise choice ol can embody any desired restrictions on wel| defined, since the laws of physics are fully deterministic
the set of possible books. The pair of a question and answgfor quantum mechanics this statement implicitly presumes
then is a choice of a subset of bookdun For example, such that one views those laws as regarding the evolution of the
a pair could be a subset of books all of which contain propowave function rather than of observables determined by non-
sitions that all “make the same claim(i.e., give the same unitary transformations of that wave functjoNonetheless,
answey concerning some formal mathematical hypothesisby the central unpredictability result of Theorem 2, we know
(i.e., concerning a question at handlext, a choice of an that such a system lies too high in the hierarchy to exist in
input to a computer is a restriction of attention to a certainmore than one copy in our physical universe.
set of books. So as an example it could be a restriction to a With such a system required to exist in more than one
set of books all of which adhere to a certain set of axiomsopy, and then identified with an oracle of computer science
(that set constitutes the premise that is input to the comtheory, we have the definition of a “physical” oracle. Can we
puten. Finally, the output function is a mapping from a book construct further analogs with computer science theory by
to a question and answer. For examp]bmay bea priori Ieveraging that definition of a physical oracle? In other
restricted to books that contain declarations of the sortvords, can we take the relationships betwéssmputer sci-
“given these axioms, the following is true.” In that case, the €nce oracles, Turing machines, and the other members of
output function is a way of choosing a single such declarathe (computer sciengeChomsky hierarchy, and use those
tion from each book(By allowing only one question per relationships together with odphysicaj oracle and physical
book, the output function manages to sidestep the issue gomputers to gainfully define other members daphaysica)
ensuring no contradiction arises between its answers to varchomsky hierarchy?
ous questions for the same underlying book. (x) Can we then go further and define physical analogs of
(vii) What other restrictions are there on the predictabilityconcepts like polynomial versus nondeterministic polyno-
relations within distinguishable sets of physical computergnial complexity, and the like? Might the halting probability
beyond that they form unions of DAG's? In other words, constant of algorithmic information theory have an analog
which unions of DAG’s can be manifested as the predictabilin physical computation theory?
ity relations within a distinguishable set? How does this an- As another example of possible links between conven-
swer change depending on whether we are considering seli@nal computer science theory and that of physical comput-
of fully input-distinguishable computers or sets of pairwise-€rs, is there a physical computer analog of Berry's paradox?
distinguishable computers? For which computers are theré/eakly predicting a partition is the physical computation
finite, countably infinite, or uncountably infinite numbers of analog of “generating a symbol sequence” in algorithmic
levels below them in the DAG to which it belongs? Might information complexity. The core of Berry’s paradox is that
such levels be gainfully compared to the conventional comthere are numbers such that no Turing machine can gener-
puter science theory issue of position in the Chomsky hierate a sequence having algorithmic information complekity
archy?[See alsaxvi) below] (with respect to some prespecified universal Turing machine
(viii) One might try to characterize the unpredictability- U). So, for example, one closely related issue in physical
of-the-future result of Theorem 2 as the physical computacomputation is to characterize the physical compu@rand
tion analog of the following issue in Turing machine theory: the xe R such that there exists a computéf where C*
Can one construct a Turing machikkthat can take as input >C? and where for all partitionsr, C* weakly predicts
A, an encoding of a Turing machine and its tape, and for anyvhetherC(m|C)>x (i.e., such that there existe’ e {x*}
suchA compute what statés Turing machine will be in  such thatX?() =x?=Y2(0) = (B, whether or noC(|C?)
after n steps, and perform this computation in fewer than >Xx)).
steps? This characterization suggests investigating the formal (xi) Concerns of computer science theory, and in particu-
parallels(if any) between the results of these papers and thdar of the theory of Turing machines, have recently been
“speed-up” theorems of computer science. incorporated into a good deal of work on the foundations of

016128-17



DAVID H. WOLPERT PHYSICAL REVIEW E 65 016128

physics(e.g.,[36,37)). Future work involves replacing physi- Bill Macready, Cris Moore, Paul Stolorz, Tom Kepler, and
cal computers for Turing machines in this work, along with Carleton Caves for interesting discussions.
replacing notions like prediction complexity for notions like
algorithmic complexity. APPENDIX: FORMAL DEFINITIONS AND PROOFS

(xii) More generally, there have been many candidates _ ) o
proposed for how one should measure “the complexity” of a This appendix presents the fully formal definitions and
physical system, e.g., thermodynamic dep#i], logical proofs of the results discussed in the text. We start with the
depth[5], and physical complexit}y36,37. Future work in- follgw;ngt'deletlon.
volves elaborating the relation between these alternatives and (_)e'la\nl(lon tation ition i . isti f
prediction complexity. Particularly intriguing in this regard is ! computation partition 1s a palf, consisting ot a
logical depth, which is explicitly concerned with “how much nonempty set 9f partition-element labels and a single-valued
mathematical work” is needed to perform a computation,mapping fromU into that set. Unless stated otherwise, the

measured in number of computation steps. Prediction con'@ppINg 1S assumed to be surjective onto the set.

plexity is also concerned with such work, only measured (':'It)' An): que?tllorpj (IJEQ!_A'S a p.?r:t't'?n’ wrtmse Aset of
spatially in terms of how much initialization precision is re- partition-element 1abels 1 .(Q)’ with elementsa < (a)
quired to perform the computation. calledanswergo that question. We restrict attention @so

(xiii ) Other future work involves investigating other pos- that there exists at least two element&\ify) for at least one

sible definitions of complexity for physical computation. qeQ.
Even sticking to analogs of algorithmic information com-
plexity, these might extend significantly beyond the modifi-
cations to the definition of prediction complexity discussed
in the text. For example, one might try to define the analo
of a bit sequence’s “length” in terms of the number of ele-
ments in{y,} rather than in terms of a volume. As another
alternative one might take thgverse complexity of a com-
putational device to be the number of input-distinguishabl
computers that can predict that deviedl contained in some
prespecified input-distinguishable set, presumpably Definition 2

(xiv) There are at least several ways that the formal defi- (i) In anoutput partition Y the space of partition element

nition of a reality presented in Sec. IVA can be modified. gpaisis a space of possible “outputgy}, consisting of all

For example, one could consider realities that consist of Setﬁairs{ ;
i . _ X Va€Q,Y.eA(Yy)}, for someQ and associated(-)
of multiple computers together with an underlying universe, s defir?ed in Definitioqml). Often, for convenience, we will

rﬁther tlhaln just a single such compl)uter. This wourl1d bring al fite an output partitionY explicitly in the form @Q,Y)
. . oy . T N L 1
the multiple computer unpredictability resules.g., Theorem whereY(-) is the output magii U—{yq € Q.yx  Ayq)}.

2) directly into play within the fundamental laws of physics D . ¢ :
themselves(A number of other topics related to realities that AISO’ We_yv|ll find it lﬂseful to dgfme an associatquredic-
tion) partition, Y (- ):0— (A(Y4(0)),Y(0)).

are worth investigating are presented in Sec. 1Y A. . ) . h f . |
(xvi) Originally we restricted attention to intelligibility (ii) n aninput partltlonlx t“.e space of partition element
dabels is a space of possible “inputsk}=A(X).

functions that are question-independent because otherwisg->’ ) X

no pair of computers could be mutually intelligiffeheorem (i) A (physica) computerconsists of the double of an
1). However, it turned out that even with this restriction, no INPUt partition and an output partition.
pair of computers can be mutually predictabldeorem 2.

Accordingly, in Secs. Il and IV attention shifted to god com- pition 1), {y} is nonempty. The surjectivity usually assumed
puters, which can correctly predict any computer outside of ¢ X(-) andY(-) (cf. Definition 1 is a restriction or{x} and

themselves, but are not themselves predictable to such com- . .
puters. Given this shift, though Theporem 1 now does n()Ty}, respectively. In the case ofit reflects the fact that we

provide a reason to require that our intelligibility functions want the computer to be able to provide any of the allowed

be question-independent. Future work involves reanalyzinﬁgsgetaset?nggtyir?]uisr::nq I:e(;ignp(\;fr:éhl\?veprgge&t)){ Idsefﬁre]g the
the issues addressed in Secs. Il and IV for full question- P P y

dependentintelligibility functions. Other future work in- ©Output of a computer simply to be a single regionlaf but
volves reanalyzing those issues for changes in which of thEather to be a question-answer pair that delineates such a
conditions(i), (i), and/or(iii ) discussed in the Appendix are "€gion. See discussion of Definition 6 belpwiore gener-

used to define weak and/or strong predictability. ally, for both inputs and outputs, for reasons of convenience
we do not want to allow a value “officially” to be in the

space of the computer’s potential inputaitputs if there is
no state of the computer that corresponds to that iquit
This work was done under the auspices of Los Alamogut). For example, if the computer is a digital workstation
National Laboratory, the Santa Fe Institute, and the Nationalith a kilobyte of its RAM set aside as input, it makes no
Aeronautics and Space Administration. | would like to thanksense to have the input space contain more th&)'{%

Note that we make no assumptions concerning the finite-
ness ofQ and/or any of the{/A(q) € Q}. Unless indicated
otherwise(e.g., in the definition of questionsany partition
9s assumed to contain at least two elements. Note that the
definition of a computer partition differs from that of a con-
ventional set-theoretic partition in its inclusion of the
epartition-element labels. Given these definitions, we can now
define physical computers.

Since we are restricting attention to nonem@tycf. Defi-
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values, the number of possible bit patterns in that RAM. For f there is additional structure in the twd at hand, one

an example of whefY(-) need not be surjective, see Defi- can refine this generalization of the definition of a copy. For

nition 7 below. example, if bothU are topological spaces that are homeo-
Example 1 continuecRestrict attention to computetX morphically related, one can require that the transformation

' implicit in establishing thatl1(Q')=II(Q?) respects that

Q, Y) where allge Q concern the same momehtThen you p _ 9 P

get a different physical computer if you change any of thelomeomorphism.

times 0,T, or 7 [implicitly setting X(-), all g(-) € Q, and Definiton 3 Consider a physical computerC

Y(-), respectively. In this sense the electronic workstation _ - ", .
on your desk is actually a set of many different computers._(Q’x(')’Y(')) and aU-partition . A (not necessarily

All those computers arétypically) copies of one another, Surjective partition mappingJ into B, f is anintelligibility
however, in the formal sense defined below. This differencdunction (for ) if

with common vernacular is important to bear in mind in L, a

considering the results presented below. Voo eU,

We can now define a “copy” of a physical computer. m(0)==(0")=1(0)=1(0"),

(iv) Given a compute€={X,Q,Y(-)}, define theémpli-  whereA(f) is defined to be the image &f underf. A setF
cation in {y} of any valuexe{x} to be the set of aly  of such intelligibility functions is anntelligibility set for .

istent withx, in that th istél e U for which o
chtﬁ}xigr)]iiznndvr(l(ﬂ) ;ny o fhere exisisie ™ Torwhie If Fis an intelligibility set form andF CQ, we say thatr

21w2 A2 V20 3\ is intelligible to C with respect td-. If the intelligibility set is
cor(r:/z)u-[gfclci?)%nglcyl_({.;(} 'i?a'r:;l (ogl}ylis]l gfﬁ‘gf&;@f not specified, it is implicitly understood to be the set of all
—{x1}={x}, and t,he i,mplication iHy2) of anyXE{x}’is the intelligibility functions for 7. We say that two physical com-
AR > putersC! and C? are mutually intelligible[with respect to
same as the implication ify*} of that x. Note thatQ i ir €1.F2)]if and only if bothY2 is intelligible to C*
— Q! means thafy?} ={y1}. e pair -, )2| an lQHYI 0t is |£1 elligible to
with respect td=- andY- is intelligible to C~ with respect to
As an example, any computer is a copy of itself. MoreF*.
generally, if V is a biecton over U, then . Pllugg.ipg in,w.is intelligible to_C if and only if for all
IX(V()),Q,Y(V(-))} is a copy of{X(-),Q,Y(-)}. An ob- |nteII!g|b|I|ty functions f_, therg eX|stsq§{yq} such thatq
vious generalization of Definition(2) is to only require that =f, i.e., such thaf\(q) is the image o underf, and such
there be a reordering of the individugl e Q2 and/or a bijec-  that for alliie U, q(0)=f(0). Formally, by the surjectivity
tive transformation of some of th&(g®e Q?) such thatQ?  of Y(-), demanding intelligibility implies that there exists
=Q. _ 0’ e U such that for allie U, [Y4(0")](0) =f(0). Note that
Note thatX'(-) may differ from X?(-) and thatY'(-)  since contains at least two elements,fis intelligible to
may differ fromYz(') in the definition of a copy of a com- C, there existyqe{yq} such tha‘[‘A(yq):B, ayq such that

puter; the two computers are allowed to have different inpu;q(yq):{o}, and one such tha(y,) ={1}. Usually we are
values for the Samﬁ, and they are allowed to have different interested in the case whereis an Output partition of a

output values for the sanie (If this were not the case, the physica| computer, as in mutual |nte|||g|b|||ty

two computers would be |dent|ChB|m|lar|y, they can have In conventional Computation asin Examp|@q,.) Speci_
different G for the same output valugand/or input value  fies the questiom e Q we want to pose to the computer. In
Accordingly, a particular partition can be weakly predictablesych scenarios, mutual intelligibility restricts how much
to a computeiC but not to a copy ofC. (For example, this  computation can be “hidden” inv2(-) and X*(-) [Y2(-)
can occur when that partition is related to the output sectiomngx2(.), respectively by coupling them, so that subsets of

of C's copy) . o L the range ofY?(-) are, directly, elements in the range of
It is possible to generalize Definition\d so thatC™ and  x1(.), without any intervening computational processing.
C? do not concern the sanm@, so long asQ* and Q? are We are now in a position to formally define what it means

both countable. The only place in our definition that the sharfor a computer to make a prediction. First consider the fol-
ing of U arises is in the requirement th@zz Ql_ To cir- Iowing three conditions relating a computera partitionn’,
cumvent that requirement, given any countable set of partiand an intelligibility set form,F.

tions {#'}, definelI({#'}) as the union over alli of the
strings (r(0),73(0),...). [Since {#'} is countable, so is
each string. This union is how the partitions collectively

(i) = is intelligible to C with respect toF, i.e., FC{y}.
(i) V feF, 3 xe{x} that weakly induces,fi.e., anx

o - such that
divide up U. Now order both the elements ad® [as
(9%1,9% ...)] and theelements ofQ?. Then if we replace X(0)=x
the requirement thaQ?=Q! with the requirement that
I1(Q%) =1I1(Q"), and redefine output partitions so thatis =
the index of a question rather than that question, we arrive at
our desired generalization. Yo(0)=(A(f),f(0)).
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(i) V feF, if the set ofx values weakly inducing is  state of the universe that cannot even be posed to at least one
nonempty, then there is at least one of the$er which itis  of those physical computers. In particular, this is true if the
further true thaX () =x="Y,(0) =f. second computer is a copy of the first one, or even if it is the

. o o same as the first ondThe result does not rely on input-

Intuitively, condition(ii) means that for all questiortsin  gjistinguishability of the two computers—a property that ob-
F, there is an input state such thatGfis initialized to that  y;ously does not describe the relationship between a com-
input state.C's answer to that question (as evaluated at) e and itselj. This impossibility holds no matter what the
must be correct. Ifii) and(iii) both hold, then we can com- cadinality of the set of questions that can be posed to the
bine those conditions into the single statement that fof all computers(i.e., no matter what the cardinality ¢ and/or
eF there exists xe{x} such that X(0)=x=Y(0) Q). Itis also true no matter how powerful the computénsd
= (f,f(0)), and(i) is superfluous. Intuitively, in such a situ- iy particular holds even if the computers are more powerful
ation, for any question in the intelligibility set, there is al- than a Turing machinewhether the computers are analog or
ways an input that induces the computer to ask @at-  gjgital, whether the universe is classical or quantum me-
rectly) answer that question. chanical, whether or not the computers are quantum comput-

Some of the unpredictability results do not require that allers, and even whether the computers are subject to physical
three conditions hold. In particular, our central result, Theoonstraints like the speed of light. In addition, the result does
rem 2, relieS on nelthdll) nor (|||), in |tS StrongeSt formula' not re|y on Chaotic dynamics in any manner. A” that is re-
tion it only invokes conditioriii) (as the proof of it presented quired is that the universe contain twperhaps identical,
below makes clear In contrast, existence proofs are stron- perhaps wildly differentphysical computers.
gest when we impose as many conditions as possible. In
addition, (ii) allows “deger?erate. prediction” forr's with Theorem 1 Consider any pair of physical computers
more than two elements, in whicBpe 7 such that allx  (ci:j=1 2. Either there exists finite intelligibility set2 for
gsed to mduce_z_ ahalso inducemr(u)=p. This cannot occur 2 gch thatC2 is not intelligible toC* with respect toF2,
if we modify (i) to “V feF, ¥ aeA(f), 3 xe{X}, ...  and/or there exists finite intelligibility s for C* such that

and such thafl U obeyingX(U)=x andf(U)=a. All of this 1 g not intelligible toC? with respect toF ..
raises the issue of which of these conditions would most

usefully be incorporated into our definition of predictability.
As a compromise, here the term “weak predictability” is -2
interpreted to mean only that conditiofisand(ii) necessar- et of 4l finite F2 includes any and all intelligibility func-
ily hold. tions for C?, i.e., any and all functions taking to a bit
Definition 4 Consider a physical comput€x, partition, ~ Whose value is set by the valué’(@). The set of th2c>se
and intelligibility set fors,F. We say thatr is weakly pre-  functions can be bijectively mapped to the power s&t'2
dictableto C with respect tcF if and only if FC{y,}, andV  So F2CQ'=0(Q?)=0(21"}). However,o({y?})=0(Q?),
feF, 3 xe{x} that weakly induces. since{y?} contains all possible specifications ofgae Q.
As a formal matter, note that in the definition of predict- Thereforeo(Q)=0(29%). But it is always true thab(2”)
able, even though(-) is surjective onta\(f ) (cf. Definition > q(A) for any setA, which means in particular that
3), it may be that for somg, the set of value$({l) takes on 0(2Q2)>0(Q2)_ Accordingly, 0(QY)>0(Q?). Similarly,

when O is restricted so thaX(0)=x do not cover all of 5 1 1 1 o
A(f). The reader should also bear in mind that by surjectiv—fthoth’0(Q )>0(Q7). Thereforeo(Q7)>0(Q7), which is

_ . impossible. QED.
ity, V xe{x}, 3 e U such thatX(0)=x.

Proof. Hypothesize that the theorem is false. Ti@hand
are mutually intelligible for all finitee* andF2. Now the

Ultimately, Theorem 1 holds due to our requiring that our
physical computer be capable of answering more than one
guestion about the future state of the universe. To satisfy this

Definition 5 Consider a set of physical computer§C'  requirementj cannot be prespecifiedn conventional com-
=(Q",X'(-),Y'(-)):i=1,...n}. We say{C'} is (input) distin- putation, it is specified in the computer’s inpuBut pre-
guishableif and only if for all/a n-tuples &'e{x'},...x"  cisely because is not fixed, for the computer’s output of
elx"), 30 e 0 such thatv i, X(0)=x simultaneously to be meaningful it must be accompanied by the specification

' ' ' of g; the computer’s output must be a well-defined region in

We say tha{C'} is pairwise(input) distinguishable if any ~ U. It is this need to specify as well asa in the output,
pair of computers from{C'} is distinguishable, and will ultimately, which means that one cannot have two physical
sometimes say that any two such compu@tsand C? “are  computers both capable of being asked arbitrary questions
distinguishable from each other.” We will also say th&'}  concerning the output of the other.
is a maximal (pairwisg distinguishable set if there are no  Theorem 1 reflects the fact that while we do not want to
physical computer€ ¢ {C'} such thatCU{C'} is a (pair-  haveC'’s output partition “rigged ahead of time” in favor of
wise) distinguishable set. some single question, we also cannot require too much flex-

Our first result does not even concern the accuracy oibility of our computer. It is necessary to balance these two
prediction. It simply states that for any pair of physical com-considerations before analyzing prediction of the future. We
puters there aralways binary-valued questions about the do this with the formal property of question independence.

We next define the property that two computers’ input
functions are independent.
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Recall that for anyf that is an intelligibility function of
(the output partition of some computerC, Vi, 0’ U,
Y(Q)=Y(0") implies thatf (0)=f(0"). So for such arf, the
joint condition[Y4(0) =Y4(0")JO[Y ,(0) =Y ,(0") ] implies
that f(0)=f(0"). In question-independence we consifler
that obey weaker conditions than this.

Definition & An intelligibility function f for an output
partition Y(-) is question independeriit and only if for all

0,0'e0

Yp()=Yy(0")
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computer is anyB-valued function of which of these four
subsets a particuldr falls into.

Theorem 1 does not hold if we restrict attention to
question-independent intelligibility sets. As an example, both
of our computers could have their output answer subsections
be a single bit, and both could have th@rcontain all four
Boolean questions about the state of the other computer’s
output answer bit(Those are the following functions from

0e U—B: Is u such that the other computer’s output bit is
1?, 0?, 1 and/or 0? Neither 1 nor)(&o theQ of both com-
puters contains all possible question-independent intelligibil-
ity sets for the other computer.

So Definition 6 allows us to circumvent Theorem 1. As an
alternative solution, we could define question-free com-
puter as a pair of an input partition and an output partition
where each output valug only consists ofA(y,) and «
[rather thary,, A(Yq), anda]. Working with such comput-

An intelligibility set as a whole is question independent if all ers would have the benefit of simplifying the analysis. Intel-

its elements are.

We write C1>C? (or equivalentlyC?<C?) and say sim-
ply thatC? is (weakly predictableto C* (or equivalently that
C* can predict C) if Y2 is weakly predictable t€* for all
question-independent finite intelligibility sets f@?. Simi-
larly, from now on we will say thaC? is intelligible to C*

without specification of an intelligibility set iﬁ(g is intelli-

gible to C! with respect to all question-independent finite

intelligibility sets for C2.

Intuitively, f is question-independent if its value does not
vary with g among any set of all of which share the same
A(q). As an example, say our physical computer is a con

ventional digital workstation. Let a certain section of the™ " "’ X . . -
" of definition of a computer is any “simpler” than our original

workstation’s RAM be designated the “output section

that workstation. That output section is further divided into a

“question subsection” designating.e., “containing”) a q,
and an “answer subsection” designating anSay that for
all g that can be designated by the question subseét{ap)

ligibility in the sense originally defined, applied to a
question-free computer, is exactly equivalent to applying
question-independent intelligibility to a full(question-
dependentcomputer. Moreover, many of the results of this
paper still hold for question-free computers.

The problem with this alternative approach is that the two
partitions X(-) and Yy(-), by themselves, do not really
specify a “computer” in any sense. They do not specify a
means of associating answers with questidBge also the
end of Sec. IV Al To address this without introducingy, ,
one might add a mapping from questions to inputs to the
definition of a computer, i.e., specify the question in the in-

put. However, once one does this it is not clear that this new

one. This approach is not pursued any further in this paper.
In general, we cannot have tlevalue of our compute€

always uniquely fix the associateq, [i.e., cannot have the

case tha¥x, 3y, such thaX(0) =x=Y (0)=y,]. If it did,

is a single bit, i.e., we are only interested in binary-valuedthenC could not predict most nontrivial computers that are

qguestions. Then for a question-independerhe value off

distinguishable fronC. For example, say that for a different

can only depend on whether the answer subsection contain<C@MputerC?, ¥ yge{ygh, A(ys)={x’}, and thatY?(0)

0 or a 1. It cannot vary with the contents of the question=X(0) ¥ . SoC*s output simply equals its input. Then
subsection. In terms of the first of the motivations we intro-Sincewhateverthe choice ofx all x* values are allowedby
duced for requiring intelligibility, requiring question- distinguishability, it follows that whatever the choice of
independent intelligibility means we only require each com-all y values are allowed. So appropriate choicexagnnot
puter'sanswerto be readily intelligible to the other one. We make the valueg/,, track (an intelligibility function of yi if
are willing to forego having the question that each computethat choice ofx forces a unique valug,, .

thinks it is answering also be readily intelligible to the other

one.

This is quite reasonable. & is to predictC? correctly,
the information of whatC? is calculating must somehow be

As a formal example of question-independent intelligibil- conveyed intoC®. Due to input distinguishability, this can

ity, say our computer has questiogsor which A(q) =B,
questionsq for which A(q)={0}, and q for which A(q)

only happen byC''s implicitly gaining access to what ques-
tion C? is answering some time after input is $either than

={1}, but no others. Then there are four distinct subsets oby havingx® reflectx?). Accordingly, for a fixedk®, C* must
U, which mutually coverJ, defined by the four equations be able to generate different predictions, depending on the

Yo(@)=(B,1), Yo(0)=(B,0), Yy(0)=({1},1), andY ()

results of that “observing.” Hencex! cannot fix the value

=({0},0). [The full partition Y(-) is a refinement of this y.. (On the other hand, it is not so unreasonable to demand
four-way partition, whereas this four-way partition need notthat the value ok* specify the valueyé, i.e., demand that it

have any relation with the partitions making up egdh Q.]

uniquely fixes what questio@® is answering. See Corollary

So a question-independent intelligibility function of our 1 below)
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The following example establishes that there are pairs ofegion of constaan,(G). This establishes th&t*>C!. Dis-
input-distinguishable physical computg&®,C?} in which  tinguishability would then hold iK4(-) subdividesx'(-) so
C? is predictable taC', and in which thequestioncompo-  that all 16 values ok* can occur with each value of.
nent ofy! is uniquely fixed byx! but not the answer com- In this setupC? may or may not be predictable @". To
ponent. see how it may not be, consider the case wHerd is a

Example 2 Q2 consists of a single question, one which single elementso distinguishability withC? is never an is-
P geq ’ sug. HaveX*(-) be a refinement o¥?(-), in that eachx*

is a binary partition o so thatA:(yg(G))zB always. Since \a1ye can only occur with one or the other of the tyd
Y?(-) is surjective, the image df underYZ(-) is all of B.  values. So eack® value delineates a “horizontal strip” of
Q* has four elements given by the four logical functions OfconstantYf,(G), running across all four values of'({)).
the bit Y2(0i). (Note these are the four intelligibility func- [Since XX(0)=Yi(@), and Yi(0)=(Yi(@)(@), Yi(0)

; 2 1y vyl 1 ; PO o « q Ak
tions for C.) Let X*(-)=Yy(+), so that{x™} contains four = (x%({1))(0), so specifying the value oK'(0) specifies
elements corresponding to those four possible questions condp(g), and each strip crosses all foyé values, as was
cerningy?2. Next, letY(0)=[Y5(0)](0) V 0 U. Thenfor  stipulated abovg.

any of the four intelligibility functions forC?, ¢, 3 x* Now choose the strip With\(Yg(G))IA(XA'(CI)):{O} to
e{x'} such thatX*(0)=x"=[A(Y4(0))=A(a)]O[Y;(T)  have coordinateY?()=1, and the strip withA(Yq(0))
=q(0)]; simply choosex'=q, so thatX'(f)=x'=Yg(0)  ={1} to have coordinater?(ti)=0. In the remaining 14

=g. Finally, to ensure distinguishability, if there are multiple strips, Y4(0) is not constant, and therefore is not a single-
x? values, let each one occur for at least énie each of the  valued intelligibility function of the associatettonstank
subregions ofJ given by the partitionX*(-). value onS(G). In both of those two strips, though‘fi(ﬂ) is
Due to question-independence, we do not need to specifthe opposite ofY?({1). So nox* value induces the identity
YS(-). If we like, we could set it so theycﬁ is uniquely fixed  question-independent intelligibility ~function ofC2:0

by the value ofx?, just as is the case fa’. —0UT%(0), i.e., nox* inducesY(0) = (B, Y3(01)). Accord-
To ensure surjectivity ofy*(-), we could haveX'(:)  ingly, C* does not predic€2.
subdivide each of the two setsne set for each valuyf,) In other instances, though, bafif andC* are predictable

{0e0: Y2(0)=y2} into four nonempty subregions, one for to C*. To have this we need to only subdivife'} and{y*}
eachx! value. So(x*(01), Y2(01)) are two-dimensional coor- into two portions, {x*}a.{y*}»), and (x*}g.{y*}s), which
dinates of a set of disjoint regions that form a rectanguladivide U in two. The first of these portions is used for pre-
array coverindJ. This means thai— (X'(01),Y2(0)) is sur-  dictions ca)nAcer_ninng, as in Example 2; each region of
jective onto{x1} x{y2}, so that for any’ and intelligibility ~ constantx*(t) is ?beset of a region of constaxt(0)
function of C2, g, there is always a value of® that both ~ Overlapping bothr,(t). The second is used for predictions
induces the correct prediction for that functigrand is con- ~ concerningC*, as just above. It consists of horizontal strips
sistent with thalyi. extending over that part d not taken up by the regions
. _ _ with X*(0) e{x*}. So {x*}a={ygta contains four ele-
The following variant of Example 2 estgblls?es that Wements, andx4}B:{yg}B contains 16, which means that!
could have yet another comput@? that predictsC* but that ={y} contains 20 elements, all told. Distinguishability is en-

. . . . 1

is also distinguishable fror@~. sured by having* take on all its possible values within any
Example 2. Have Q3=Q1, {x3}={x'}, Y3(-)=X3(:),  subset ofU over which bothX’(-) andX?(-) are constant.

Yi(ﬂ):[Yg(ﬁ)](ﬂ) Vv teU, and havex3(-) subdivide We now present the proof of Theorem 2.

X1(-) so that all four values of® can occur with each value Proof of Theorem 2Given Y1(-) and Y2(-), we define
of x*. In general, as we vary over dlie U and therefore the functionf(01) by
over all (x!,x®) pairs, the pair of the intelligibility function
that C! is predicting will separately vary from those th@t fA)=1 if A(Y4(D0)={0},
is predicting, in such a way that alf*Dairs of intelligibility
functions forC? are answered correctly for sonde= U.

In addition, we can have a computéf, distinguishable
from both C' and C?, where C*>C!, so thatC*>C!
>C2. We can do this either witlC*>C? or not, as the

2(0)=0 it ACYA@)={1},

f2(@)=NoT[YL(D)] if A(Yg(D)=B,

following variant of Example 2 demonstrates. and
2 A _ .
Example 2 Have Yg(-)=X%-),  Ya(Q) (=0 otherwise.
=[Yq(0)1(0) V e U, and{x*}={yg} equals the set of all
24 question-independent intelligibility functions fo€?. Intuitively, this function is the negation of'’s answer when
[There are four possible yp: Y''s question is contained iB. Now A(f?) e[{0},{1},B],

{({0},0),({1},1),(B,0),(B,1)}.] Ensure surjectivity ofY*  with its precise value depending @({y'}). Since by con-
(+) by having each region of constaMG(O) overlap each structionf? does not vary withf(l](a), only with A(Yé(ﬂ)),
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this means thaf? is a question-independent intelligibility
function of Y. Define f! similarly, just with no negation
operation;f*()) = Y2(0), wheneveA(yg) CB, and equals 0
otherwise.

By hypothesis, there existsx? such that X?(0)
=x?=Y5(0)=(A(f?),f%(0)). [Note that for that x?,
A(Y5(0)) e {{0}.{1},B}.] Similarly for x* andf*. So by in-
put distinguishability3 single( such that at the same time,
Y§(0)= f2(0) anin(0)=f1(0). Plugging in and using the
fact that both A(Y;(0))e{{0},{1},B} and A(Yg(D))
€{{0},{1},B}, we see thatyl(0)=fi(0)="Y2(0)="f2(0)
=NOT[Yi(CI)]. This contradiction establishes our result.
QED.
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to beinfallible if its associated answers are always correct
responses to its associated questions, i.e., Yif(Q)
=[Y4(0)](0) V 0. [As an example, given any partitiom,

the computer which has a single question given d{y)
=(0) and which hasr (1) = #(0) is infallible.] Then we
have the following.

Corollary 1. Let C* andC? be two distinguishable mutu-
ally intelligible computers, both of which are stable. It is not
possible that botiC! and C? are infallible.

Proof. Let F2 be the set of all questions-independent in-
telligibility functions for C2. Theang{yé}, by mutual in-
telligibility. By stability of Y%, this means that for alf
eF?, there existsce {x;} such thatX, (&) =x=Y(0)=".

Restating it, Theorem 2 says that either there exists a fif C! were infallible, this would then mean thart%,(ﬁ)

nite question-independent intelligibility set f@*,F*, such
that C! is not predictable taC? with respect toF!, and/or

=(A(f),f(0)). Sox weakly induced, and more generally,
C'>C?2. Similarly, C*>C!. If we now apply Theorem 2 we

there exists a finite question-independent intelligibility setget the result claimed. QED.

for C?,F2, such thalC? is not predictable t€* with respect
to F2. We can weaken the definition of “intelligibility func-
tion” and still establish the impossibility of having bot*
>C? andC?>C. For example, that impossibility will still
be obtained even if neitheE! nor C? containsB-valued

Similarly, one can produce corollaries of the results pre-
sented below by, in essence, replacing predictability with in-
fallibility. For reasons of space, those corollaries are not pre-
sented here. Note that for any stable, infallible compQtef

questions, if they instead contain all possible functions mapC’ is intelligible to C, then all three conditioné)—(iii) con-

ping each others’ values of, onto {0, 1, 2 (or more pre-
cisely contain all such functions gf,—cf. the definition of
prediction partition. For pedagogical simplicity, such weak-
ened definitions are not investigated here.

sidered for defining weak predictability hold.

As an aside, there are several ways one can generalize the
foregoing to the case of stochastic scenarios. One starts by
defining aprobabilistic partition Ras a space of partition

Note that Theorem 2 still holds if we consider larger in- 1abelsA(R) and an associated distributid?k(r € A(R)|0).

telligibility sets that are supersets Bf the set of all intelli-
gibility functions of Y,,. In particular, consider modifying
the definition of weak predictability to involvieé’, the set of
all intelligibility  functions of the partition 0
—(X(0),Yp(0)). Intuitively, this is the set of allquestion-
independentintelligibility functions of the entire computer
(X,Y), not just of its output partition(So “prediction” now
means, in essence, predicting all aspect€9fThen since
FCF’, Theorem 2 still applies with this alternative defini-
tion of weak predictability.

(The situation considered heretofore is the special case where
all such distributions aré functions) In particular, an output
probabilistic partitionY is one wherdA(y)} is the set of all
pairs{qe{yq},@cA(q)} for some set of probabilistic parti-
tions{yy}. An example is a workstation whose output is the
specification of one of a set of candidate Gaussian distribu-
tions concerning some aspect of the external world, i.e., a
GaussiarP (0l «). Given also a prior distributio®(«), we

can express that workstation’s output as a probabilistic ques-
tion (i.e., probabilistic partitionP(«|0) together with a par-

As mentioned previously, Theorem 2 does not rely onticular associated answet Another example is wheriis a

mutual intelligibility. This reflects our restriction to question-

wave function, and a probabilistic partition gives the results

independent intelligibility functions. Such functions cannot©f @ Hermitian operator applied to that wave function.

“see” what the contents of some(computer-to-be-
predicted’s y, are. Similarly, condition(ii) does not care
about the contents of ar(predicting computer)sy,. So the
contents ofy, in either a predicting or being-predicted com-

puter are, for the most part, irrelevant. Accordingly, restric-

For simplicity, assume from now on that the full joint
distribution overU and all partition labels is specified, and
that P(0) is nowhere-zero over its domain of definition.
Now any actual physical computer’s state is specifiedi in
for a classical universe, and the same is true in the quantum

tions on those contents have few effects concerning computase assuming is an eigenstate of the operator of a human

ers predicting each other
intelligibility sets.

using question-independembserving the computer’s output. Accordingly, the input and

output probabilistic partitions of a probabilistic computer

Nonetheless, Theorem 2 can be used to derive an uncorfi-e., P(xe{x}|t) and P(ye{y}|0), respectively are &

putability result that does rely on mutually intelligibility. To
see this, define a computérto be (Y,) stableif for all g

functions, although the partitioN, is not one in general.
Two probabilistic computer€* andC? are (input) probabi-

e{yq}, there is always an associated input that forces théistic distinguishableif for all x* e {x'} andx®e{x?}, there

output question to equal, i.e., if there existsx such that
X(0)=x=Y,(0)=q. (Note that given anyy, sinceY, is

exists{l such thatP(0) #0, P(x}|0) #0, andP(x?|0) #0.
As before, an intelligibility function is a “translation”

surjective, stability can always be assured by choosing a sufnapping a partition’s possible label values iBoFormally,

ficiently fine-grainedX(-).) In addition, define a computer

a probabilistic intelligibility function® of a (probabilistig
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partition R with labelsr is a probabilistic partition having
A(P)CB where there exists a single-valued functibmir
—B such thatP(¢ e A(P)|0)=[dU 8(¢,h(r)) P(r|0). [A
guestion-independent probabilistic intelligibility function of
an output partitiony simply hash(y) depend only ory,,.]
We define thalegree of weak predictabilityf a probabilistic
partition R to a probabilistic computeC for an intelligibility
setF as

grc= MiNg  F Maxy f dti Py ([ IN)

x;) 8(,b)Py(|0)Poyr 0UTp+ (A(f ), b)[T].

Intuitively, this is the minimax probability o€’s answer(b)
agreeing with®’s answer(¢).

Note thategr.c=1 implies that¢=b V 0O such that
P(0]x) is nonzero(for the maximizingx). Now since output
partitions areé functions, if R is the output partition of a
computerC’, then alld CF are é functions. In other words,
those intelligibility functions are single-valued functions
from U to B (as always are the partitionéandY). Accord-
ingly, having ¢ necessarily equdb reduces to the conven-
tional (nonprobabilistic definition of weak predictability,

PHYSICAL REVIEW E 65 016128

intelligibility function of C?, we know thatf*2e Q. More-
over, viewed as a questioA(f*?)=B. So, we have estab-
lished thatQ?! contains a binary valued function.

Next, note that the functiomieU—1 is always a
question-independent intelligibility function @2, as is the
function 0le U—0. Again using surjectivity, we see that
for these two functions arfl} and{0}, respectively. QED.

We now present proofs of some other results presented in
the main text.

Proof of Corollary 2: Hypothesize that the corollary is
wrong. Define the composite deviceC*=(N*(-)
=TI""}XI(-),Q% YX(-)). Since{C'} is fully distinguishable,
X* () is surjective. Therefor€* is a physical computer.

Since by hypothesi€" is intelligible to C"~ %, there ex-
ists yg ! such thatA(yg~ ") =B. Also, sinceC" ?>C""*,
there existsx" 2e{x"~2} such that for allie U for which
AYGTHD) =B, X" 2(0)=x""2=y0 " 2(0)=Y)H(D). It-
erating and exploiting full distinguishability, there exists
(x*,...x"~2) such that for allii U for which A(Yg’l(ﬂ))
=B, (X}0),...X""2(0)=(x},...x""2)=Y*(0)=Y(0)
=Y""1(0). The same holds when we restrictso that the
spaceA(Yy '(0))={1}, and when we restricti so that

and Theorem 2 applies. This proves that it is impossible teA(Yq ™ *(0))={0}.

have two distinguishable probabilistic comput&sand C?
SUCh thats cl:c2=E€cg2:.c1= 1

Since by hypothesi€" is intelligible to C"~ 2, and since
X*(-) is surjective, this result means thaf is predictable

Returning to the case of nonprobabilistic partitions, weto C*. Conversely, sinc€">C* by hypothesis, the output
now present a result that is often handy in working with partition of C* is predictable toC", and thereforeC* is.

systems meeting our definition of weak predictabilite.,
conditions (i) and (ii)]. First note that for any partitionr

Finally, since{C'} is fully distinguishable,C* and C" are
distinguishable. Therefore Theorem 2 applies, and by using

containing at least two elements, there exists an intelligibilityour hypothesis we arrive at a contradiction. QED.

function f for 7 with A(f)=B, an intelligibility function f
with A(f)={1}, and an intelligibility functionf with A(f)
={0}. By exploiting the surjectivity of output partitions, we

Proof of Theorem 3Assume our corollary is wrong, and
some computeC€ is predictable to itself. Since by definition

can extend this result to concern all partitions. This is for-predictability implies intelligibility, we can apply Lemma 1
mally established in the following lemma, which holds to establish that there is @e{yq}, q', such thatA(q')

whether or not we assume partitions are binary.

Lemma 1 Consider a physical comput&®. If there ex-
ists any output partitiony? that is intelligible toC?, then
there exists)' e Q! such thata(q*) =B, aq’e Q* such that
A(gh={0}, and ag’e Q! such thatA(gql)={1}.

Proof. Since{y?} is nonempty,{yg} is nonempty. Pick
someq* e{yg} having at least two element@By definition
of a physical computer, there is at least one sgth Con-
struct any binary-valued functioft 2 of « € A(q*) such that
there exists at least onefor which f*?(a)=0 and at least
one for which f*?(«)=1. Define an associated function
f*2(0)=*2(Y2(0)) if A(Y5(0))=A(g*), O otherwise. By
the surjectivity ofY?(-), V aeA(q*), there existdl such
that bothY3(0) = g* andY%(0) = «. Therefore there exists
such thatf*2(01) =1, there exist$ such that*2(0)=0. This

establishes, by construction, that there is a question=

independent intelligibility function of£? that takes on both
the value 1 and the valuef® 2. So by our hypothesis th&t?

=B. Therefore one question-independent intelligibility func-
tion of C is the functionf from ile U—B that equals 1 if
A(Y4(0))=B andY,(0) =0, and equals O otherwise. There-
fore by hypothesis there existse{x} such thatX(0)
=x=A(Y4(0))=B and Y ,(0)=f(0). But if {A(Yq(0))}
=B, thenf(0)=NoT Y ,(0)], by definition off(-). SinceX

is surjective, this means that there is at least ord) such
that {A(Y4(0))}=B and Y,(0)=NoT[Y,(0)]. This is im-
possible. QED.

For analyzing god computers the following definition is
useful.

Definition 7. Consider a pairwise distinguishable $€f}
with god computerC. Define the partitionsy'*) (0 U)
=(Y,(0),Y,)(0)), where each answer mal, ()
(Y,(0),Y!(0)), and each questidivy)(0)] is identically
equal  to the mapping given by 0'eU
—([Yq(0)](0"),[Y4(@)](T")). Then C! is omniscientif

is intelligible to C* with respect to any question-independent Y2*3*""" is weakly predictable t&€?.
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“Intuitively, Y'*J is just the double partition(Y'(-),  which X273(0)=x2"3, Y2~¥0)=q?*"3 But as was just

YIC)=((Ye()s Ya()).(Y4(+).Y4()), re-expressed to be shown, Y% %(6)=qg?~3(0) for that@. Therefore,C* is pre-

in terms of a single question-valued partition and a singledictable toC23,

answer-valued partition. To motivate this re-expression, for Next, sinceC! is omniscient,Y?*3 is intelligible to C*.

any two questions' e Q' andq'e Ql, letq'x ¢! be the or-
dered product of the partitiong andq’; it is the partition
assigning to every poinii’ U the label(q'(0'),q/(0")).
Then if Y'q(ﬂ) is the questiorg' and Y{](ﬂ) is the question
q', Y4 (D) is the questiorg'xq. Y, is defined simi-
larly, only with one fewer levels of “indirection,” since an-

swer components of output partitions are not themselves pal

titions (unlike question componentsNote that even though
anyY'(-) andY!(-) are both surjective mapping¥,”’ need
not be surjective onto the set of quadrupleseQ', ¢

eQl, a'e A(Q),d! eA(Qj)}.

Corollary 3. Consider three pairwise-distinguishable com-

putersC?,C?,C3, where there does not exigf e Q* such
that A(q®) ¢ B. Assume thaC? is an omniscient computer,
and thatC? is intelligible to C3. Finally, assume further not

only that C%s output can be any of its possible question-
answer pairs, but also that for any of its questions, for any of
the associated possible answers, there are situations th

that answer is corredso thatC? should leaveC®s answer
alone in those situations|Formally, this means that for all

pairs (q°€ Q% a®c A(q%), 3 GieU such that bothy3(0)
=g andg*(0)=a?, i.e., [Y3(0)](0)=a®] Then it is not
possible that for allaeU, Yi(0)=1 if [Y3(0)](D)
=Y3(0), 0 otherwise.

Therefore any binary function of the regions defined by qua-
druplesf A(Y(0)),A(Y5(D)), Y5(D), Y3(0)] is an element of
Q. Any single such region is wholly contained in one region
defined by the paifA(Y;~%(01)),Y%~%(1)] though. Therefore
any binary function of the regions defined by such pairs is an
element ofQ*. ThereforeC?2 is intelligible to Q. Simi-
larly, the value of any such binary function must be given by
Y1(0) wheneveix}(0) equals some associatetl SoC?~3
is predictable taC?.

Finally, sinceC' andC? are input distinguishable, so are
C! andC?~3, and therefore Theorem 2 applies. This estab-
lishes that our hypothesis results in a contradiction. QED.

Similarly, we cannot arrange to have two computers be
“antipredictable” to one another. This is mentioned in the
main text as Corollary 4 of Theorem 2. The proof of this
result is as follows.

Proof of Corollary 4 By assumptiorC* andC? are mu-
[fally intelligible. So what we must establish is whether for
both of them, for all intelligibility functions concerning the
other one, there exists an appropriate value'o$uch that
that intelligibility function is incorrectly predicted.

Hypothesize that the corollary is wrong. Then for all
question-independent intelligibility functions fa?, f1, 3
x?e{x? such that X2(0)=x? implies that [A(Y5(0))
=NoT A(f})]] [Y2(0)=NoT] f1(0)]]. However, by defini-

Proof. Hypothesize that the corollary is wrong. Constructtion of question-independent intelligibility functions, given

a composite deviceC?3, starting by havingX?~3(-)
=Y5(), Q**=Q?% andY; ¥-)=Y3(-). Next define the
question @ by the rule a(0)=NoT[Y3(0)] if Y%(0)=0,

G(G)EYi(U) otherwise.(N.B. no assumption is made that
6 Q?~2) To complete the definition of the composite com-

puter C273, let Y273(0) = 4({)).

Now by our hypothesis, for allteU, 6(0)

_ 3/n ~ .- . .
=[Y5(@)](0). By the last of the conditions specified in the

corollary, this means that for all(g>3eQ? 3 a?3
e A(g®79), there existsli such thatY; *(0)=g?~* and
Y2 3(0)=a?3 So C?7% allows all possible values of

{y?~3, as a physical computer must. Due to surjectivity of

Y3, it also allows all possible values of the spg&é~2}. To
complete the proof that?~3is a (surjective physical com-
puter, we must establish that2 %(0) e A(YZ %(D))Va
eU. To do this note that if, for example,
ACYEX))AYS(0)=A(Y§(D))={1}, then since it is al-
ways the case that the Y2 3(0)=[Y5 %1)](D)
=[Yg(@](0), Y3 (0)=1. Similarly Y2 ¥0)Y2 (1)
eA(Y; X0)) when A(Y;¥0))={0}. Finally, if
A(Y;7%(01))=B, then the simple fact that> *(0) e B al-
ways means that’~ () e A(Y; ().

SinceC! is intelligible to C3 andQ?~3=Q?3, C! is intel-
ligible to C?~3. Moreover, given any questiogf —3e Q%73
there exists associated3e {x?~3 such thatV t1eU for

any suchf!, there must be another question-independent in-
telligibility function of C?!, 3, defined by f3(-)
=nNoT(f}(-)). Therefore there existx?e{x?} such that
X%(0)=x* implies that [A(Y;(0))=A(f*)]0[Y2(0)
=f3(0)].

This NOT(-) transformation bijectively maps the set of all
question-independent intelligibility functions f@? onto it-
self. Since that set is finite, this means that the image of the
set under thevoT(-) transformation is the set itself. There-
fore our hypothesis means that all question-independent
functions forC* can be predicted correctly b§? for appro-
priate choice ok?e {x?}. By similar reasoning, we see that
C! can always predicC? correctly. SinceC! and C? are
distinguishable, we can now apply Theorem 2 and arrive at a
contradiction. QED.

Recall that there are three conditions related to weak pre-
dictability, and for pedagogical simplicity we settled on two
for our formal definition of the ternfcf. discussion preced-
ing Definition 4). The situation with strong predictability is
closely analogous. Its formal definition involving two condi-
tions is as follows.

Definition 8 Consider a pair of physical compute&
and C2. We say thatC? is strongly predictableto C* (or
equivalently thatC* can strongly predict &), and writeC*
>C? (or equivalentlyC?<C?) if and only if (i) C? is intel-
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ligible to C*, and (ii) for all question-independent intelligi-

bility functions for C2, qt, V x?e{x?}, there existsx!

e {x!} thatstrongly induceghe pair @*,x?), i.e., such that
XHo)y=x*
=

[Y(0)=(A(q"),q*(0)]OX*(0) =x].

We now present the proofs of some of the fundament

theorems concerning strong predictability.

Proof of Theorem 5To prove(i), let f be any question-
independent intelligibility function ofr. By Lemma 1, the

PHYSICAL REVIEW E 65 016128

The following theorems involve physical computation
analogs of TM theory.

Theorem 4Given a set of physical computef€'}, there
does not exisC*e{C'} such that for aliC?e {C'}.

(i) C? is intelligible to C*.

(i) V e Q?, 3 xte{x!} such thatx*(0)=x'=Y(0)
=1 if and only if g?(0) = Y2(0).

Proof. ChooseC? such thaty?(-)=Y?*(-). (If need be, to
po thls simply choos&?=C*.) Then in particular,Y(-)
Y2(-). Now sinceC? is intelligible to C* by hypothesis,

by Lemma 1 there exisig' € Q* such thatA(q)={0}, and

therefore there existy* € Q2 such thatA(g?)={0}. For that

g% Yi(o)=1 if and only if 0=Y1(0), which is impossible.

everywhere O-valued question-independent intelligibility QED.

function of w is contained inQ?, and sinceC!>C?, there
must be arx* such thatx*(0) =x'=Y2 (0)=0. The same is

We now present definitions needed to analyze prediction

true for the everywhere 1-valued function. Therefore toCOmPplexity.

prove the claim we need only establish that for every

guestion-independent intelligibility function ofr, f, for
which A(f)=B, feQ?, and there exists ar® such that
x}()=x'=YL(0)="f(0). Restrict attention to suchfrom
now on.

Define a question-independent intelligibility function of

C?, 12, such thaiA(12) =B, and such that for alll for which
A(Y4(0))=B, 12(0) = Yz(u) [Note that sinceC?> 7, there
both exist 0 for which Yz(u) (B,1) and G such that

(u) (B,0).] Now by hypotheS|s for any of thewe are
con3|der|ng, there existsx?e{x?} such that X2(0)
—xf=>Y2(u) (B,f(0)). However, the fact thatC1
> 23X e{x'} such that X'(0)=x'=X?(0)=x? and
such that Y5(0) = (A(12),12(0)) = (B,1(01)). Since X*(0)
=x? for such aQ, A(Y2(0))=B, and thereforel?(0)
—Yz(u) So Y5(0) for such all equals(B,Y%(0)). So for
thatx?, Y2 p(0) = (A(f),f(0)).

Thls establlshes) The proof for(ii) goes similarly, with
the redefinition thax{ fixes the value ok® as well as ensur-
ing thatY§(0)=(A(f ),f(0)). QED.

Proof of Theorem 6Choose any?. For any question-
mdependent intelligibility function oy f, there must exist
an xi e {x'} that strongly induces? andf sinceCl>C?2.
Label any such! as xf (x? being implicitly fixed. So far
any suchf {0: XY(0)=x}}c{0: X3(0)=x?}. However,

since {y} is not empty, there are at least two question-

mdependent intelligibility functions qf f1, andf,, where
A(f );&A(fz) (cf. Lemmaj) Moreover the intersectiofii:

Definition 10 For any physical compute€ with input
space{x}, we have the following.

(i) Given any partitions, a(weak prediction input setof
C, for m) is any sesC{x} such that both every intelligibility
function of 7 is weakly induced by an element sfand for
any proper subset of at least one such function is not
weakly induced. We write the space of all weak prediction
input sets ofC for 7 asC ().

(i) Given any other physical comput&’ with input
space{x’} for which the set of all question-independent in-
telligibility functions is{f’}, a (strong prediction input set
of C, for the tripleC’, E'C{x'}, andf’'C{f'}, is any set
sC{x} such that both every paif (e f',x’ e ') is strongly
induced by a member & and for any proper subset sfat
least one such pair is not strongly induced. We write the
space of all strong prediction input setsf C, for C’, 2,

=

andf’) asC }(C’,E’,f").

Definition 11 Given a physical computé and a measure
du overU, we have the following.

(i) DefineV(:C{x}) as the measure of the set of all
e U such thatX({l) e 2, and define thdength of = [with
respect taX(-)] as/(E)=—In[V(E)].

(i) Given a partitions that is predictable to a physical
computerC, define theprediction complexityf 7 (with re-
spect toC), C(|C), as min_c-1-[/ (p)].

Proof of Theorem 7Given any intelligibility functionf
for , consider any? e {x?} that weakly induces i.e., such
that X2(0)= xf:>Y2(u) (A(f),f(0)). (The analysis will

1
X(@)=x7 }N{t:X*(0) =xi } =, since these two sets in- not be affected itm is an output partition and we restrict

duce dlﬁerentA(yq) [namely A(fy) and A(f,), respec-
tively]. This means thaft: X*(0)=x} Jcfo: X2(0) =x2}.

attention to those intelligibility functions fos that are ques-
tion independenl Since C'>C?, we can then choose an

On the other hand, for the same reasons, there must also extep Xf(X7), to strongly inducex? together with any question-

an x? that strongly |nduce3(f1. Therefore there existg?’
such that{t: X2(0)=Xx2" c{u: X1(0)=xf11}. So{t:X3(0)

=x2"}c{0: X3(0)=x?. This is not compatible with the

fact thatX?(-) is a partition. QED.

independent intelligibility function of/p (Indeed, in general
there can be more than one such valug'othat induces?.)
So, in partlcular we can choose it so that the veo’[b(ru)
=(A(I% (f)) IA(f)(u)) for any possible funct|orI|A (f)- Now
for that xt, X2(0)= xf, and thereforeA(Y ()=A(f),
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which means that} ;,(0)=Y?%(0), which in turn equals Now take{x?i} to be the set inC?) () with minimal
f(0) for that x*. So for all 0 such thatX'(8)=X{(x{),  length. {x{} has at mosb(27) disjoint elements, one for

1y — P 1,2 H
Ip(u)_.(é(lf )hf(u))' In. OtTFr.mQrd?’xf(.xf) V\f/eaI:]Iy |n2— each intelligibility function ofz. Using the relation mifg;]
uces inC* the same intelligibility function ofw that x; ——max[—g], this means thatC(w|C?)=—In[o2M]

- - 2 . l A~
weakly induces in C7. However since X(0) 4 min[/(x?)]. Therefore we can writ€(mCl)—C(mC?)

=X}x?)=X2(0)=x?, the set ofieU such thatX*({) vl (2 (2
=X}(x?) is contained within the set such thaf(1)=x?. =In[o(2")]=In(3)+max [/ (X;, (x{))] ~ min[/(x;)].  The

This means that”(X}(x?)=/(x3). (Our task, loosely fact thatfor allxf, X?(0)=x; =A(Y;(0))=A(f;)CB com-

speaking, is to bound this difference in lengths, and then t@letes the proof ofi).

extend the analysis to simultaneously consider all such To prove(ii), note that we can always construct one of the

question-independent intelligibility functiorfs sets in CY) ~*(7) by starting with the set consisting of the
Take{f;} to be the set of all intelligibility functions fofr.  glement of{X} (x?)} having the shortest length, and then

By the preceding constructiom, is weakly predictable t€* vel Idd'l that val to that set. until ¢

with a (not necessarily propesubset of{ X} (x?)} being a successively adding othel values to that set, until we %e a

o1 1 full  (weak prediction set. Therefore C(w|C")

member of C7) “(m). Now any member of @) "*(7)  <min (X! (x2)). Using this bound rather than the one in-

must contain at least three disjoint elements, corresponding i . .

to intelligibility functions q with A(Y%(0))=B, {0}, or {1}. ~ VOIVing ~In(3) establishesi). QED.

(See the discussion just before LemmaAccordingly, the

volume (as measured bylu) of any subset OHX%i(XfZi)} Note that the set af e B such thaf C?]~1(Z) exists must

e (Ch () must be at least three times the volume of thepq nonempty, sinc&€2>. Similarly, C2>= means that

element of{Xfli(x?i)} having the smallest volume. In other yore is a such thatA(Y,(0))=ZCB. The associated

words, the length of any subset Kf (x{)}e(C) Y(m)  always exists by construction: simply defirg(a)=Y?(0)

must be at most-In(3) plus the length of the longest ele- V G such thatA(Y,(0))=2, and for all othed, I%(O)zx for

ment of{X}i(xfi)}. ThereforeC(wlCl)$maxfi[/(Xf1i(xf2i))] somex e Z. Therefore the extrema in our bounds are always

—In(3). well defined.
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